Three-dimensional computational fluid dynamics internal combustion engine simulations that use a simplified combustion model based on the flamelet concept provide acceptable results with minimum computational costs and reasonable running times. Moreover, the simulation can neglect small combustion chamber details such as valve crevices, valve recesses, and piston crevices volume. The missing volumes are usually compensated by changes in the squish volume (i.e., by increasing the clearance height of the model compared to the real engine). This paper documents some of the effects that such an approach would have on the simulated results of the combustion phenomena inside a conventional heavy-duty direct injection compression-ignition engine, which was converted to port fuel injection spark ignition operation. Numerical engine simulations with or without crevice volumes were run using the G-equation combustion model. A proper parameter choice ensured that the numerical results agreed well with the experimental pressure trace and the heat release rate. The results show that including the crevice volume affected the mass of a unburned mixture inside the squish region, which in turn influenced the flame behavior and heat release during late-combustion stages.

References

References
1.
Hessel
,
R.
,
Reitz
,
R. D.
,
Yue
,
Z.
,
Musculus
,
M. P.
, and
O’Connor
,
J.
,
2015
, “
Applying Advanced CFD Analysis Tools to Study Differences Between Start-of-Main and Start-of-Post Injection Flow, Temperature and Chemistry Fields Due to Combustion of Main-Injected Fuel
,”
SAE Int. J. Eng.,
8
(
5
), pp.
2159
2176
.
2.
Liu
,
J.
,
Szybist
,
J.
, and
Dumitrescu
,
C. E.
,
2018
, “
Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation
,” SAE Technical Paper 2018-01-0183.
3.
ANSYS® Chemkin
,
2016
, “
Release 17.2. ANSYS Chemkin-Pro Reaction Workbench Manual
,” ANSYS, Inc.
4.
Speziale
,
C.
,
1998
, “
Turbulence Modeling for Time-Dependent RANS and VLES: A Review
,”
AIAA J.
,
36
(
2
), pp.
173
184
.
5.
Rakopoulos
,
C.
,
Kosmadakis
,
G.
,
Dimaratos
,
A.
, and
Pariotis
,
E.
,
2011
, “
Investigating the Effect of Crevice Flow on Internal Combustion Engines Using a New Simple Crevice Model Implemented in a CFD Code
,”
Appl. Energy
,
88
(
1
), pp.
111
126
.
6.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
7.
Zhao
,
J. X.
, and
Chia-fon
,
F. L.
,
2006
, “
Modeling of Blow-By in a Small-Bore High-Speed Direct-Injection Optically Accessible Diesel Engine
,” SAE Technical Paper 2006-01-0649.
8.
Goldsborough
,
S. S.
, and
Potokar
,
C. J.
,
2007
, “
The Influence of Crevice Flows and Blow-By on the Charge Motion and Temperature Profiles Within a Rapid Compression Expansion Machine Used for Chemical Kinetic (HCCI) Studies
,” SAE Technical Paper 2007-01-0169.
9.
ANSYS® Forte
,
2017
, “
Release 17.2. ANSYS Forte Quick Start
,” Ansys, Inc.
10.
Jensen
,
T. K.
, and
Schramm
,
J.
,
2000
, “
A Three-Zone Heat Release Model for Combustion Analysis in a Natural Gas SI Engine. Effects of Crevices and Cyclic Variations on UHC Emissions
,” SAE Technical Paper 2000-01-2802.
11.
Aceves
,
S. M.
,
Flowers
,
D. L.
,
Espinosa-Loza
,
F.
,
Martinez-Frias
,
J.
,
Dibble
,
R. W.
,
Christensen
,
M.
,
Johansson
,
B.
, and
Hessel
,
R. P.
,
2002
,
Piston-Liner Crevice Geometry Effect on HCCI Combustion by Multi-Zone Analysis
,
Lawrence Livermore National Laboratory (LLNL)
,
Livermore, CA
.
12.
Reitz
,
R. D.
, and
Kuo
,
T.-W.
,
1989
, “
Modeling of HC Emissions Due to Crevice Flows in Premixed-Charge Engines
,” SAE Technical Paper 892085.
13.
Wentworth
,
J.
,
1971
, “
The Piston Crevice Volume Effect on Exhaust Hydrocarbon Emission
,”
Combust. Sci. Technol.
,
4
(
1
), pp.
97
100
.
14.
ANSYS® Forte
,
2018
, “
Release 18.0. Forte Tutorials
,” ANSYS, Inc.
15.
Wickman
,
D. D.
,
Senecal
,
P. K.
, and
Reitz
,
R. D.
,
2001
, “
Diesel Engine Combustion Chamber Geometry Optimization Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling
,” SAE Technical Paper 2001-01-0547.
16.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
J. Energy Resour. Technol.
,
140
(
10
), p.
102205
.
17.
Lee
,
S.
,
Gonzalez,
D. M. A.
, and
Reitz
,
R. D.
,
2007
, “
Effects of Engine Operating Parameters on Near Stoichiometric Diesel Combustion Characteristics
,” SAE Technical Paper 2007-01-0121.
18.
Ameen
,
M. M.
,
Mirzaeian
,
M.
,
Millo
,
F.
, and
Som
,
S.
,
2018
, “
Numerical Prediction of Cyclic Variability in a Spark Ignition Engine Using a Parallel Large Eddy Simulation Approach
,”
J. Energy Resour. Technol.
,
140
(
5
), p.
052203
.
19.
Jiao
,
Q.
, and
Reitz
,
R. D.
,
2014
, “
Modeling of Equivalence Ratio Effects on Particulate Formation in a Spark-Ignition Engine Under Premixed Conditions
,” SAE Technical Paper 2014-01-1607.
20.
Yang
,
S.
,
Reitz
,
R. D.
,
Iyer
,
C. O.
, and
Yi
,
J.
,
2008
, “
Improvements to Combustion Models for Modeling Spark-Ignition Engines Using the G-Equation and Detailed Chemical Kinetics
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
1009
1025
.
21.
Fan
,
L.
,
Li
,
G.
,
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
Modeling Fuel Preparation and Stratified Combustion in a Gasoline Direct Injection Engine
,” SAE Technical Paper 970627.
22.
Jiao
,
Q.
, and
Reitz
,
R. D.
,
2015
, “
The Effect of Operating Parameters on Soot Emissions in GDI Engines
,”
SAE Int. J. Eng.
,
8
(
3
), pp.
1322
1333
.
23.
Liang
,
L.
,
Wang
,
Y.
,
Shelburn
,
A.
,
Wang
,
C.
,
Modak
,
A.
, and
Meeks
,
E.
,
2016
, “
Applying Solution-Adaptive Mesh Refinement in Engine Simulations
,”
Proceedings of the International Multidimensional Engine Modeling User’s Group Meeting
,
Detroit, MI
,
Apr. 11
, Paper 2.
24.
Puduppakkam
,
K. V.
,
Wang
,
C.
,
Hodgson
,
D.
,
Naik
,
C.
, and
Meeks
,
E.
,
2016
, “
Accurate and Dynamic Accounting of Fuel Composition in Flame Propagation During Engine Simulations
,” SAE Technical Paper 2016-01-0597.
25.
Vermorel
,
O.
,
Richard
,
S.
,
Colin
,
O.
,
Angelberger
,
C.
,
Benkenida
,
A.
, and
Veynante
,
D.
,
2007
, “
Multi-Cycle LES Simulations of Flow and Combustion in a PFI SI 4-Valve Production Engine
,” SAE Technical Paper 2007-01-0151.
26.
Richard
,
S.
,
Colin
,
O.
,
Vermorel
,
O.
,
Benkenida
,
A.
,
Angelberger
,
C.
, and
Veynante
,
D.
,
2007
, “
Towards Large Eddy Simulation of Combustion in Spark Ignition Engines
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3059
3066
.
27.
Abani
,
N.
,
Kokjohn
,
S.
,
Park
,
S. W.
,
Bergin
,
M.
,
Munnannur
,
A.
,
Ning
,
W.
,
Sun
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
An Improved Spray Model for Reducing Numerical Parameter Dependencies in Diesel Engine CFD Simulations
,” SAE Technical Paper 2008-01-0970.
28.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2018
, “
Combustion Visualization in a Single-Cylinder Heavy-Duty CI Engine Converted to Natural Gas SI Operation
,”
Proceeding of Eastern States Section of the Combustion Institute's Spring Technical Meeting
,
State College, PA
,
Mar. 4–7
, Paper 3C06.
29.
Dumitrescu
,
C. E.
,
Padmanaban
,
V.
, and
Liu
,
J.
,
2018
, “
An Experimental Investigation of Early Flame Development in an Optical SI Engine Fueled With Natural Gas
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), pp.
082802
082809
.
30.
Bommisetty
,
H.
,
Liu
,
J.
,
Kooragayala
,
R.
, and
Dumitrescu
,
C. E.
,
2018
, “
Fuel Composition Effects in a CI Engine Converted to SI Natural Gas Operation
,” SAE Technical Paper 2018-01-1137.
31.
ANSYS® Forte
,
2017
, “
Release 17.2. User Guide
,” ANSYS, Inc.
32.
Fan
,
L.
,
Li
,
G.
,
Han
,
Z.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Fuel Preparation and Stratified Combustion in a Gasoline Direct Injection Engine
,” SAE Technical Paper 1999-01-0175.
33.
Tan
,
Z.
, and
Reitz
,
R. D.
,
2006
, “
An Ignition and Combustion Model Based on the Level-Set Method for Spark Ignition Engine Multidimensional Modeling
,”
Combust. Flame
,
145
(
1–2
), pp.
1
15
.
34.
Tan
,
Z.
,
2004
,
Multi-Dimensional Modeling of Ignition and Combustion in Premixed and DIS/CI (Direct Injection Spark/Compression Ignition) Engines
,
University of Wisconsin
,
Madison, WI
, p.
211
.
35.
ANSYS® Forte
,
2017
, “
Release 17.2. Forte Theory
,” ANSYS, Inc.
36.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge
.
37.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ–ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
38.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
39.
Verma
,
I.
,
Bish
,
E.
,
Kuntz
,
M.
,
Meeks
,
E.
,
Puduppakkam
,
K.
,
Naik
,
C.
, and
Liang
,
L.
,
2016
, “
CFD Modeling of Spark Ignited Gasoline Engines-Part 1: Modeling the Engine Under Motored and Premixed-Charge Combustion Mode
,” SAE Technical Paper 2016-01-0591.
40.
Verma
,
I.
,
Bish
,
E.
,
Kuntz
,
M.
,
Meeks
,
E.
,
Puduppakkam
,
K.
,
Naik
,
C.
, and
Liang
,
L.
,
2016
, “
CFD Modeling of Spark Ignited Gasoline Engines-Part 2: Modeling the Engine in Direct Injection Mode Along With Spray Validation
,” SAE Technical Paper 2016-01-0579.
41.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2018
, “
3D CFD Simulation of a CI Engine Converted to SI Natural Gas Operation Using the G-Equation
,”
Fuel
,
232
(
1
), pp.
833
844
.
42.
Zhao
,
J.
, and
Shan
,
T.
,
2013
, “
Coupled CFD–DEM Simulation of Fluid–Particle Interaction in Geomechanics
,”
Powder Technol.,
239
(
1
), pp.
248
258
.
43.
Zeldovich
,
Y.
,
Frank-Kamenetskii
,
D.
, and
Sadovnikov
,
P.
,
1947
,
Oxidation of Nitrogen in Combustion
,
Publishing House of the Acad of Sciences of USSR
,
Moscow-Leningrad
.
You do not currently have access to this content.