Thirty-nine different species of waste biomass materials that include woody or herbaceous resources as well as nut shells and juice pulps were used to develop empirical equations to predict the calorific value based on the proximate analysis results. Ten different linear/nonlinear equations that contain proximate analysis ingredients including or excluding the moisture content were tested by means of least-squares method to predict the HHV (higher heating value). Prediction performance of each equation was evaluated considering the experimental and the predicted values of HHV and the criteria of MAE (mean absolute error), AAE (average absolute error), and ABE (average bias error). It was concluded that the presence of moisture as a parameter improves the prediction performance of these equations. Also, the samples were classified into two subsets according to their fixed carbon (FC)/ash values and then the correlations were repeated for each subset. Both the full set of samples and the subsets showed a similar trend that the presence of moisture in equations enhances the prediction performance. Also, the FC content may be disregarded from the equation of the calorific value prediction when the FC/ash ratio is lower than a given value.

References

References
1.
Klass
,
D. L.
,
1998
,
Biomass for Renewable Energy, Fuels, and Chemicals
,
Academic Press
,
San Diego
.
2.
Jimenez
,
S.
, and
Ballester
,
J.
,
2005
, “
Effect of Co-Firing on the Properties of Submicron Aerosols From Biomass Combustion
,”
Proc. Combust. Inst.
,
30
, pp.
2965
2972
.
3.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2019
, “
Unburnt Carbon From Oxygen-Enriched Combustion of Low Quality Fuels at Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012101
.
4.
Parikh
,
J.
,
Channiwala
,
S. A.
, and
Ghosal
,
G. K.
,
2007
, “
A Correlation for Calculating Elemental Composition From Proximate Analysis of Biomass Materials
,”
Fuel
,
86
(
12–13
), pp.
1710
1719
.
5.
Shen
,
J.
,
Zhu
,
S.
,
Liu
,
X.
,
Zhang
,
H.
, and
Tan
,
J.
,
2010
, “
The Prediction of Elemental Composition of Biomass Based on Proximate Analysis
,”
Energy Convers. Manage.
,
51
(
5
), pp.
983
987
.
6.
Gillespie
,
G. D.
,
Everard
,
C. D.
,
Fagan
,
C. C.
, and
McDonnell
,
K. P.
,
2013
, “
Prediction of Quality Parameters of Biomass Pellets From Proximate and Ultimate Analysis
,”
Fuel
,
111
, pp.
771
777
.
7.
Yin
,
C. Y.
,
2011
, “
Prediction of Higher Heating Values of Biomass From Proximate and Ultimate Analyses
,”
Fuel
,
90
(
3
), pp.
1128
1132
.
8.
Nhuchhen
,
D. R.
, and
Abdul Salam
,
P.
,
2012
, “
Estimation of Higher Heating Value of Biomass From Proximate Analysis: A New Approach
,”
Fuel
,
99
, pp.
55
63
.
9.
Erol
,
M.
,
Haykiri-Acma
,
H.
, and
Kucukbayrak
,
S.
,
2010
, “
Calorific Value Estimation of Biomass From Their Proximate Analyses Data
,”
Renew. Energy
,
35
(
1
), pp.
170
173
.
10.
Ahmaruzzaman
,
M.
,
2008
, “
Proximate Analyses and Predicting HHV of Chars Obtained From Cocracking of Petroleum Vacuum Residue With Coal, Plastics and Biomass
,”
Bioresour. Technol.,
99
(
11
), pp.
5043
5050
.
11.
Friedl
,
A.
,
Padouvas
,
E.
,
Rotter
,
H.
, and
Varmuza
,
K.
,
2005
, “
Prediction of Heating Values of Biomass From Elemental Composition
,”
Anal. Chim. Acta
,
544
(
1–2
), pp.
191
198
.
12.
Channiwala
,
S. A.
, and
Parikh
,
P. P.
,
2002
, “
A Unified Correlation for Estimating HHV of Solid, Liquid and Gaseous Fuels
,”
Fuel
,
181
(
8
), pp.
1051
1063
.
13.
Chen
,
W. H.
,
Cheng
,
W. Y.
,
Lu
,
K. M.
, and
Huang
,
Y. P.
,
2011
, “
An Evaluation on Improvement of Pulverized Biomass Property for Solid Fuel Through Torrefaction
,”
Appl. Energy
,
88
(
11
), pp.
3636
3644
.
14.
Titiloye
,
J. O.
,
Abu Bakar
,
M. S.
, and
Odetoye
,
T. E.
,
2013
, “
Thermochemical Characterization of Agricultural Wastes From West Africa
,”
Ind. Crops Prod.
,
47
, pp.
199
203
.
15.
Maddi
,
B.
,
Viamajala
,
S.
, and
Varanasi
,
S.
,
2011
, “
Comparative Study of Pyrolysis of Algal Biomass From Natural Lake Blooms With Lignocellulosic Biomass
,”
Bioresour. Technol.,
102
(
23
), pp.
11018
11026
.
16.
Chiou
,
B. S.
,
Vaenzuela-Medina
,
D.
,
Bilbao-Sainz
,
C.
,
Klamczynski
,
A. K.
,
Avena-Bustillos
,
R. J.
,
Milczarek
,
R. R.
,
Du
,
W. X.
,
Glenn
,
G. M.
, and
Orts
,
W. J.
,
2015
, “
Torrefaction of Pomaces and Nut Shells
,”
Bioresour. Technol.
,
177
, pp.
58
65
.
17.
Ozyuguran
,
A.
,
Akturk
,
A.
, and
Yaman
,
S.
,
2018
, “
Optimal Use of Condensed Parameters of Ultimate Analysis to Predict the Calorific Value of Biomass
,”
Fuel
,
214
, pp.
640
646
.
18.
Yao
,
F. Q.
, and
Wang
,
H. H.
,
2019
, “
Theoretical Analysis on the Constitution of Calorific Values of Biomass Fuels
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022207
.
19.
Xie
,
G. N.
,
Gupta
,
A. K.
,
Zhang
,
Y. N.
,
Manca
,
O.
, and
Zhang
,
H. C.
,
2018
, “
Special Issue on Recent Advances in Fundamentals and Applications of Biomass Energy
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
040301
.
20.
Ren
,
X. H.
,
Meng
,
X. X.
,
Panahi
,
A.
,
Rokni
,
E.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2018
, “
Hydrogen Chloride Release From Combustion of Corn Straw in a Fixed Bed
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051801
.
21.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2019
, “
Effects of Dilute Phosphoric Acid Treatment on Structure and Burning Characteristics of Lignocellulosic Biomass
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082203
.
22.
Monti
,
A.
,
Di Virgilio
,
N.
, and
Venturi
,
G.
,
2008
, “
Mineral Composition and Ash Content of Six Major Energy Crops
,”
Biomass Bioenerg.,
32
(
3
), pp.
216
223
.
23.
Patel
,
S. U.
,
Kumar
,
B. J.
,
Badhe
,
Y. P.
,
Sharma
,
B. K.
,
Saha
,
S.
,
Biswas
,
S.
,
Chaudhury
,
A.
,
Tambe
,
S. S.
, and
Kulkarni
,
B. D.
,
2007
, “
Estimation of Gross Calorific Value of Coals Using Artificial Neural Networks
,”
Fuel
,
86
(
3
), pp.
334
344
.
24.
Akinyemi
,
O. S.
,
Jiang
,
L. L.
,
Buchireddy
,
P. R.
,
Barskov
,
S. O.
,
Guillory
,
J. L.
, and
Holmes
,
W.
,
2018
, “
Investigation of Effect of Biomass Torrefaction Temperature on Volatile Energy Recovery Through Combustion
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112003
.
25.
Demirbas
,
A.
,
1996
, “
Calculation of Higher Heating Values of Biomass Fuels
,”
Fuel
,
76
(
5
), pp.
431
434
.
26.
Jimenez
,
L.
, and
Gonzalez
,
F.
,
1991
, “
Study of the Physical and Chemical Properties of Lignocellulosic Residues With a View to the Production of Fuels
,”
Fuel
,
70
(
8
), pp.
947
950
.
27.
Cordero
,
T.
,
Marquez
,
F.
,
Mirasol
,
J. R.
, and
Rodriguez
,
J. J.
,
2001
, “
Predicting Heating Values of Lignocellulosics and Carbonaceous Materials From Proximate Analysis
,”
Fuel
,
80
(
11
), pp.
1567
1571
.
28.
Majumder
,
A. K.
,
Jain
,
R.
,
Banerjee
,
P.
, and
Barnwal
,
J. P.
,
2008
, “
Development of New Proximate Analysis Based Correlation to Predict Calorific Value of Coal
,”
Fuel
,
87
(
13–14
), pp.
3077
3081
.
29.
Akkaya
,
A. V.
,
2009
, “
Proximate Analysis Based Multiple Regression Models for Higher Heating Value Estimation of Low Rank Coals
,”
Fuel Process. Technol.,
90
(
2
), pp.
165
170
.
You do not currently have access to this content.