The combustion stability has a significant influence on safety and reliability of a gas-fired boiler. In this study, a numerical model was first established and validated to investigate the effect of combustion stabilizing device on flow and combustion characteristics of 75 t/h blast furnace gas (BFG) and coke oven gas (COG) mixed-fired boiler. The results indicated that the device coupled with four corner burners enables the flame to spin upward around its side surface, which facilitates heat exchange between BFG and the device. Under stable combustion condition, the combustion stabilizing device can be used as a stable heat source and enhance heat exchange in the furnace. Then, to obtain optimal COG ratio, combustion process of different blending ratios were experimentally investigated. The experimental results revealed that the energy loss due to high exhaust gas temperature is relatively high. COG ratio should be set up taking into account both boiler efficiency and NOX emissions. When COG blending ratio is maintained about 20%, the thermal efficiency of the boiler is 88.84% and the NOX concentration is 152 mg/m3 at 6% O2, meeting NOX emissions standard for the gas boiler.

References

References
1.
Shen
,
B.
,
Han
,
Y.
,
Price
,
L.
,
Lu
,
H.
, and
Liu
,
M.
,
2017
, “
Techno-Economic Evaluation of Strategies for Addressing Energy and Environmental Challenges of Industrial Boilers in China
,”
Energy
,
118
, pp.
526
533
.
2.
AQSIQ
,
2014
, “
Emission Standard of Air Pollutants for Boiler
,”
Administration of Quality Supervision, Inspection and Quarantine
,
Beijing
, Standard No. GB13271.
3.
Yang
,
Z.
,
Cheng
,
H.
,
Wu
,
X.
, and
Chen
,
Y.
,
2011
, “
Research on Improving Energy Efficiency and the Annual Distributing Structure in Electricity and Gas Consumption by Extending Use of GEHP
,”
Energ. Pol.
,
39
(
9
), pp.
5192
5202
.
4.
Shang
,
S.
,
Li
,
X.
,
Chen
,
W.
,
Wang
,
B.
, and
Shi
,
W.
,
2017
, “
A Total Heat Recovery System Between the Flue Gas and Oxidizing Air of a Gas-Fired Boiler Using a Non-Contact Total Heat Exchanger
,”
Appl. Energ.
,
207
, pp.
613
623
.
5.
Liu
,
J.
,
Sun
,
B.
,
Zhang
,
G.
,
Bai
,
T.
,
Shou
,
B.
, and
Hu
,
Y.
,
2012
, “
Numerical Simulation and Optimization on Stable Combustion of a 1000 MW Ultra Supercritical Unit Swirl Combustion Boiler
,”
Proc. Csee
,
32
(
8
), pp.
19
27
.
6.
Wang
,
D.
,
Liu
,
Q.
,
Zhao
,
W.
, and
Han
,
P.
,
2015
, “
Fuzzy Comprehensive Evaluation on Combustion Stability and Economy of a Power Plant Boiler Based on Furnace Parameters Measurement
,”
J. Chinese Soc. Power Eng.
,
35
(
6
), pp.
437
444
.
7.
Yousef
,
H.
, and
Katherine
,
H.
,
2018
, “
Demonstration of an Inverse Relationship Between Thermal Efficiency and Specific Entropy Generation for Combustion Systems
,”
ASME J. Energ. Resour. Technol.
,
141
(
1
), p.
014501
.
8.
Rehan
,
A.
,
Habib
,
M.
,
Elshafei
,
M.
, and
Alzaharnah
,
I.
,
2017
, “
Modeling Time Variations of Boiler Efficiency
,”
ASME J. Energ. Resour. Technol.
,
140
(
5
), p.
052001
.
9.
Perez
,
M. G.
,
Vakkilainen
,
E.
, and
Hyppänen
,
T.
,
2016
, “
Fouling Growth Modeling of Kraft Recovery Boiler Fume Ash Deposits With Dynamic Meshes and a Mechanistic Sticking Approach
,”
Fuel
,
185
, pp.
872
885
.
10.
Madejski
,
P.
,
Janda
,
T.
,
Taler
,
J.
,
Nabaglo
,
D.
,
Wezik
,
R.
, and
Mazur
,
M.
,
2017
, “
Analysis of Fouling Degree of Individual Heating Surfaces in a Pulverized Coal Fired Boiler
,”
ASME J. Energ. Resour. Technol.
,
140
(
3
), p.
032003
.
11.
Zhang
,
S.
,
Shen
,
G.
,
An
,
L.
, and
Li
,
G.
,
2015
, “
Ash Fouling Monitoring Based on Acoustic Pyrometry in Boiler Furnaces
,”
Appl. Therm. Eng.
,
84
, pp.
74
81
.
12.
Nabaglo
,
D.
,
Kurek
,
T.
, and
Wojdan
,
K.
,
2018
, “
Combustion Process Analysis and Diagnostic Using Optical Flame Scanners in Front-Fired Pulverized Coal Boiler
,”
ASME J. Energ. Resour. Technol.
,
140
(
7
), p.
072003
.
13.
Qi
,
G.
,
Zhang
,
S.
,
Liu
,
X.
,
Guan
,
J.
,
Chang
,
Y.
, and
Wang
,
Z.
,
2017
, “
Combustion Adjustment Test of Circulating Fluidized Bed Boiler
,”
Appl. Therm. Eng.
,
124
, pp.
1505
1511
.
14.
Hu
,
Z.
,
Ma
,
X.
,
Chen
,
Y.
,
Liao
,
Y.
,
Wu
,
J.
,
Yu
,
Z.
,
Li
,
S.
,
Yin
,
L.
, and
Xu
,
Q.
,
2015
, “
Co-combustion of Coal With Printing and Dyeing Sludge: Numerical Simulation of the Process and Related no x Emissions
,”
Fuel
,
139
, pp.
606
613
.
15.
Liu
,
H.
,
Liu
,
Y.
,
Yi
,
G.
,
Nie
,
L.
, and
Che
,
D.
,
2013
, “
Effects of Air Staging Conditions on the Combustion and no\r, x\r, \r, Emission Characteristics in a 600 MW Wall Fired Utility Boiler Using Lean Coal
,”
Energ. Fuel.
,
27
(
10
), pp.
5831
5840
.
16.
Ren
,
X.
,
Meng
,
X.
,
Panahi
,
A.
,
Rokni
,
E.
,
Sun
,
R.
, and
Levendis
,
Y.
,
2017
, “
Hydrogen Chloride Release From Combustion of Corn Straw in a Fixed Bed
,”
ASME J. Energ. Resour. Technol.
,
140
(
5
), p.
051801
.
17.
Wei
,
Z.
,
Li
,
X.
,
Xu
,
L.
, and
Tan
,
C.
,
2012
, “
Optimization of Operating Parameters for Low NOx Emission in High-Temperature Air Combustion
,”
Energy Fuel.
,
26
(
5
), pp.
2821
2829
.
18.
AQSIQ
,
2016
, “
Performance Test Code for Utility Boiler
,”
Administration of Quality Supervision, Inspection and Quarantine
,
Beijing
, Standard No. GB/T10184-2015.
19.
Singh
,
R. I.
,
Brink
,
A.
, and
Hupa
,
M.
,
2013
, “
CFD Modeling to Study Fluidized Bed Combustion and Gasification
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
585
614
.
20.
Chen
,
S.
,
Xing
,
Y.
, and
Li
,
A.
,
2017
, “
CFD Investigation on Low-NOx Strategy of Folded Flame Pattern Based on Fuel-Staging Natural Gas Burner
,”
Appl. Therm. Eng.
,
112
, pp.
1487
1496
.
21.
Zha
,
Q.
,
Li
,
D.
,
Wang
,
C.
, and
Che
,
D.
,
2017
, “
Numerical Evaluation of Heat Transfer and NOX Emissions Under Deep-Air-Staging Conditions Within a 600 MWe Tangentially Fired Pulverized-Coal Boiler
,”
Appl. Therm. Eng.
,
116
, pp.
170
181
.
22.
Mikilkumar
,
B.
,
Vuthaluru
,
R.
,
Vuthaluru
,
H.
,
French
,
D.
, and
Shah
,
K.
,
2012
, “
CFD Based Prediction of Erosion Rate in Large Scale Wall-Fired Boiler
,”
Appl. Therm. Eng.
,
42
(
42
), pp.
90
100
.
23.
Li
,
D.
,
Liu
,
X.
,
Wang
,
C.
,
Xu
,
K.
,
Zha
,
Q.
,
Lv
,
Q.
,
Feng
,
Y.
,
Zhong
,
J.
, and
Che
,
D.
,
2017
, “
Numerical Study on Combustion and Heat Transfer Properties Under Oxy-Fuel Condition in a 600 MW Utility Boiler
,”
Energy Procedia
,
105
, pp.
4009
4014
.
24.
Jeong
,
H. J.
,
Dong
,
K. S.
, and
Hwang
,
J.
,
2014
, “
CFD Modeling for Coal Size Effect on Coal Gasification in a Two-Stage Commercial Entrained-Bed Gasifier With an Improved Char Gasification Model
,”
Appl. Energ.
,
123
(
3
), pp.
29
36
.
25.
Tan
,
P.
,
Tian
,
D.
,
Fang
,
Q.
,
Ma
,
L.
,
Zhang
,
C.
,
Chen
,
G.
,
Zhong
,
L.
, and
Zhang
,
H.
,
2017
, “
Effects of Burner Tilt Angle on the Combustion and NOX Emission Characteristics of a 700 MWe Deep-Air-Staged Tangentially Pulverized-Coal-Fired Boiler
,”
Fuel
,
196
, pp.
314
324
.
26.
Gera
,
D.
,
Mathur
,
M.
,
Freeman
,
M.
, and
O’Dowd
,
W.
,
2001
, “
Moisture and Char Reactivity Modeling in Pulverized Coal Combustors
,”
Combust. Sci. Technol.
,
172
(
1
), pp.
35
69
.
27.
Gera
,
D.
,
Mathur
,
M.
, and
Freeman
,
M.
,
2003
, “
Parametric Sensitivity Study of a CFD-Based Coal Devolatilization Model
,”
Energ. Fuel.
,
17
(
3
), pp.
794
795
.
28.
Hill
,
S. C.
, and
Smoot
,
L. D.
,
2000
, “
Modeling of Nitrogen Oxides Formation and Destruction in Combustion Systems
,”
Prog. Energ. Combust. Sci.
,
26
(
4
), pp.
417
458
.
29.
Liu
,
G.
,
Chen
,
Z.
,
Li
,
Z.
,
Li
,
G.
, and
Zong
,
Q.
,
2015
, “
Numerical Simulations of Flow, Combustion Characteristics, and NOx, Emission for Down-Fired Boiler With Different Arch-Supplied Over-Fire Air Ratios
,”
Appl. Therm. Eng.
,
75
(
1
), pp.
1034
1045
.
You do not currently have access to this content.