The Blue Tower gasifier (BTG) is a promising and relatively new type of technology that can convert various organic materials into syngas. The process proceeds through a stage-reforming concept and uses heat carrier materials for indirect thermolysis. In addition, the modular design of this technology allows for scalability and ease of installation which can be applied to remote or off-grid communities. In addition, there is potential for the valorization of its gasification products to other useful chemicals. Knowing the potential advantages of this technology, the aim of this work is to introduce the BTG technology for potential application to remote communities and to investigate the effects of the main operational parameters on the performance of the system. In this study, we simulated a BTG system connected to a combined heat and power (CHP) plant using aspen plus with Fortran subroutines and given design specifications. The results obtained in this study were verified with reported data in the literature. The maximum electrical efficiency of the system was calculated to be about 25% for biomass with 5% moisture content, 0.5 steam to biomass ratio, and 900 °C reforming temperature. On the other hand, the highest overall system efficiency of the CHP system (sum of the electrical and the thermal efficiency) was estimated to be about 73% for biomass feedstock with 20% moisture content, 0.5 steam to biomass ratio, and 950 °C reforming temperature.

References

References
1.
Reiche
,
K.
,
Covarrubias
,
A.
, and
Martinot
,
E.
,
2000
, “
Expanding Electricity Access to Remote Areas: Off-Grid Rural Electrification in Developing Countries
,”
Fuel
,
1
(
1.2
), pp.
1
4
.
2.
Arriaga
,
M.
,
Brooks
,
M.
, and
Moore
,
N.
,
2016
,
Open Access Energy. Report
,
Waterloo Global Science Initiative, University of Waterloo
,
Waterloo
.
3.
Arriaga
,
M.
,
Cañizares
,
C. A.
, and
Kazerami
,
M.
,
2014
, “
Northern Lights: Access to Electricity in Canada’s Northern and Remote Communities
,”
IEEE Power Energy Mag.
,
12
(
4
), pp.
50
59
.
4.
Göransson
,
K.
,
Söderlind
,
U.
,
He
,
J.
, and
Zhang
,
W.
,
2011
, “
Review of Syngas Production Via Biomass DFBGs
,”
Renew. Sustain. Energy Rev.
,
15
(
1
), pp.
482
492
.
5.
Ruiz
,
J. A.
,
Juárez
,
M. C.
,
Morales
,
M. P.
,
Muñoz
,
P.
, and
Mendívil
,
M. A.
,
2013
, “
Biomass Gasification for Electricity Generation: Review of Current Technology Barriers
,”
Renew. Sustain. Energy Rev.
,
18
, pp.
174
183
.
6.
Ahmad
,
A. A.
,
Zawawi
,
N. A.
,
Kasim
,
F. H.
,
Inayat
,
A.
, and
Khasri
,
A.
,
2016
, “
Assessing the Gasification Performance of Biomass: A Review on Biomass Gasification Process Conditions, Optimization and Economic Evaluation
,”
Renew. Sustain. Energy Rev.
,
53
, pp.
1333
1347
.
7.
Sansaniwal
,
S. K.
,
Pal
,
K.
,
Rosen
,
M. A.
, and
Tyagi
,
S. K.
,
2017
, “
Recent Advances in the Development of Biomass Gasification Technology: A Comprehensive Review
,”
Renew. Sustain. Energy Rev.
,
72
, pp.
363
384
.
8.
Molino
,
A.
,
Larocca
,
V.
,
Chianese
,
S.
, and
Musmarra
,
D.
,
2018
, “
Biofuels Production by Biomass Gasification: A Review
,”
Energies
,
11
(
4
), p.
811
.
9.
Concord Blue Thermal Based Waste to Energy Presentation
[Internet],
2011
, http://ndma.gov.in/images/cbt/presentations/Somnath%20Bhattacharjee.pdf, Cited April 2018.
10.
Proven Process [Internet], http://www.concordblueenergy.com/solutions-in-action/proven-process, Cited June 11, 2018.
11.
Process [Internet], http://jbec.jp/english/technology/technology01/, cited June 11, 2018.
12.
François
,
J.
,
Abdelouahed
,
L.
,
Mauviel
,
G.
,
Patisson
,
F.
,
Mirgaux
,
O.
,
Rogaume
,
C.
,
Rogaume
,
Y.
,
Feidt
,
M.
, and
Dufour
,
A.
,
2013
, “
Detailed Process Modeling of a Wood Gasification Combined Heat and Power Plant
,”
Biomass Bioenergy
,
51
, pp.
68
82
.
13.
Françios
,
J.
,
Mauviel
,
G.
,
Feidt
,
M.
,
Rogaume
,
C.
,
Rogaume
,
Y.
,
Mirgaux
,
O.
,
Patisson
,
F.
, and
Dufour
,
A.
,
2013
, “
Modeling of a Biomass Gasification CHP Plant: Influence of Various Parameters on Energetic and Exergetic Efficiencies
,”
Energy Fuels
,
27
(
12
), pp.
7398
7412
.
14.
Skorek-Osikowska
,
A.
,
Bartela
,
Ł.
,
Kotowicz
,
J.
,
Sobolewski
,
A.
,
Iluk
,
T.
, and
Remiorz
,
L.
,
2014
, “
The Influence of the Size of the CHP (Combined Heat and Power) System Integrated With a Biomass Fueled Gas Generator and Piston Engine on the Thermodynamic and Economic Effectiveness of Electricity and Heat Generation
,”
Energy
,
67
, pp.
328
340
.
15.
Formica
,
M.
,
Frigo
,
S.
, and
Gabbrielli
,
R.
,
2016
, “
Development of a New Steady State Zero-Dimensional Simulation Model for Woody Biomass Gasification in a Full-Scale Plant
,”
Energy Convers. Manage.
,
120
, pp.
358
369
.
16.
You
,
S.
,
Tong
,
H.
,
Armin-Hoiland
,
J.
,
Tong
,
Y. W.
, and
Wang
,
C. H.
,
2017
, “
Techno-Economic and Greenhouse Gas Savings Assessment of Decentralized Biomass Gasification for Electrifying the Rural Areas of Indonesia
,”
Appl. Energy
,
208
, pp.
358
369
.
17.
Pedroso
,
D. T.
,
Machin
,
E. B.
,
Pérez
,
N. P.
,
Braga
,
L. B.
, and
Silveira
,
J. L.
,
2017
, “
Technical Assessment of the Biomass Integrated Gasification/Gas Turbine Combined Cycle (BIG/GTCC) Incorporation in the Sugarcane Industry
,”
Renew. Energy
,
114
(
Part B
), pp.
464
479
.
18.
Pala
,
L. P. P.
,
Wang
,
Q.
,
Kolb
,
G.
, and
Hessel
,
V.
,
2017
, “
Steam Gasification of Biomass With Subsequent Syngas Adjustment Using Shift Reaction for Syngas Production: An Aspen Plus Model
,”
Renew. Energy
,
101
, pp.
484
492
.
19.
Fernandez-Lopez
,
M.
,
Pedroche
,
J.
,
Valverde
,
J. L.
, and
Sanchez-Silva
,
L.
,
2017
, “
Simulation of the Gasification of Animal Wastes in a Dual Gasifier Using Aspen Plus
,”
Energy Convers. Manage.
,
140
, pp.
211
217
.
20.
Leyko
,
A. B.
, and
Gupta
,
A. K.
,
2013
, “
Temperature and Pressure Effects on Hydrogen Separation From Syngas
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
034502
.
21.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041803
.
22.
Islam
,
S.
, and
Dincer
,
I.
,
2018
, “
A Comparative Study of Syngas Production From Two Types of Biomass Feedstocks With Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092002
.
23.
El-Emam
,
R. S.
, and
Dincer
,
I.
,
2017
, “
Assessment and Evolutionary Based Multi-Objective Optimization of a Novel Renewable-Based Polygeneration Energy System
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012003
.
24.
Fragiacomo
,
P.
,
De Lorenzo
,
G.
, and
Corigliano
,
O.
,
2018
, “
Performance Analysis of a Solid Oxide Fuel Cell-Gasifier Integrated System in Co-Trigenerative Arrangement
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092001
.
25.
Dowaki
,
K.
, and
Genchi
,
Y.
,
2009
, “
Life Cycle Inventory Analysis on Bio-DME and/or Bio-MeOH Products Through BLUE Tower Process
,”
Int. J. Life Cycle Assess.
,
14
(
7
), pp.
611
620
.
26.
Dowaki
,
K.
,
Katayama
,
N.
,
Nagaishi
,
T.
,
Kuroda
,
S.
, and
Kameyama
,
M.
,
2017
, “
A System Analysis of Storage Alloy for Bio-H2 in Consideration of the Purification
,”
J. Jpn. Inst. Energy
,
96
(
8
), pp.
266
272
.
27.
Dowaki
,
K.
,
Ohta
,
T.
,
Kasahara
,
Y.
,
Kameyama
,
M.
,
Sakawaki
,
K.
, and
Mori
,
S.
,
2007
, “
An Economic and Energy Analysis on Bio-Hydrogen Fuel Using Gasification Process
,”
Renew. Energy
,
32
(
1
), pp.
80
94
.
28.
Kameyama
,
M.
,
Ogura
,
S.
,
Kamiuchi
,
H.
, and
Dowaki
,
K.
,
2010
, “
Performance Evaluation of 1t/d Scale Plant Through Blue Tower Gasification Process
,”
J. Jpn. Soc. Energy Resour.
,
31
(
2
), pp.
43
50
.
29.
Scott
,
J. A.
, and
Adams
,
T. A.
,
2018
, “
Biomass-Gas-and-Nuclear-to-Liquids (BGNTL) Processes Part I: Model Development and Simulation
,”
Can. J. Chem. Eng.
,
96
(
9
), pp.
1853
1871
.
30.
Doherty
,
W.
,
Reynolds
,
A.
, and
Kennedy
,
D.
,
2013
, “An Aspen Plus Simulation of Biomass Gasification in a Steam Blown Dual Fluidised Bed,”
Materials and Processes for Energy: Communicating Current Research and Technological Developments
,
A.
Méndez-Vilas
, ed.,
Formatex Research Centre
, pp.
80
94
.
31.
Final Report of the MNRE Project
,
2014
,
Advance Biomass Research Centre (ABRC)
,
Combustion, Gasification & Propulsion Lab (CGPL), Department of Aerospace Engineering, Indian Institute of Science, Ministry of New and Renewable Energy (MNRE)
,
Bangalore
.
32.
Nàsner
,
A. M. L.
,
Lora
,
E. E. S.
,
Palacio
,
J. C. E.
,
Rocha
,
M. H.
,
Restrepo
,
J. C.
,
Venturini
,
O. J.
, and
Ratner
,
A.
,
2017
, “
Refuse Derived Fuel (RDF) Production and Gasification in a Pilot Plant Integrated With an Otto Cycle ICE Through Aspen Plus Modelling: Thermodynamic and Economic Viability
,”
Waste Manage.
,
69
, pp.
187
201
.
33.
Spath
,
P.
,
Aden
,
A.
,
Eggeman
,
T.
,
Ringer
,
M.
,
Wallace
,
B.
, and
Jechura
,
J.
,
2005
, “
Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly-Heated Gasifier
,” Technical Report,
National Renewable Energy Laboratory
.
34.
Adams
,
T. A.
, II
,
2018
,
Learn Aspen Plus in 24 Hours
,
McGraw-Hill Education
,
New York, NY
.
35.
Lin
,
Y. C.
,
2013
, “
Catalytic Valorization of Glycerol to Hydrogen and Syngas
,”
Int. J. Hydrogen Energy
,
38
(
6
), pp.
2678
2700
.
36.
Ayoobi
,
M.
, and
Schoegl
,
I.
,
2017
, “
Non-Catalytic Conversion of Glycerol to Syngas at Intermediate Temperatures: Numerical Methods With Detailed Chemistry
,”
Fuel
,
195
, pp.
190
200
.
37.
Kaushal
,
P.
,
Pröll
,
T.
, and
Hofbauer
,
H.
,
2008
, “
Model for Biomass Char Combustion in the Riser of a Dual Fluidized Bed Gasification Unit: Part 1—Model Development and Sensitivity Analysis
,”
Fuel Process. Technol.
,
89
(
7
), pp.
651
659
.
38.
Kaushal
,
P.
,
Pröll
,
T.
, and
Hofbauer
,
H.
,
2008
, “
Model for Biomass Char Combustion in the Riser of a Dual Fluidized Bed Gasification Unit: Part II—Model Validation and Parameter Variation
,”
Fuel Process. Technol.
,
89
(
7
), pp.
660
666
.
39.
Winter
,
F.
,
Wartha
,
C.
,
Loffler
,
G.
, and
Hofbauer
,
H.
,
1996
, “
The NO and N2O Formation Mechanism During Devolatilization and Char Combustion Under Fluidized-Bed Conditions
,”
Symposium (International) on Combustion
,
26
(
2
), pp.
3325
3334
.
40.
Herdem
,
M. S.
,
2013
, “
Combined Coal Gasification and Alkaline Water Electrolyzer for Hydrogen Production
,” Masters thesis,
University of Waterloo
,
Waterloo
.
41.
Herdem
,
M. S.
,
Farhad
,
S.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
,
2014
, “
Thermodynamic Modeling and Assessment of a Combined Coal Gasification and Alkaline Water Electrolysis System for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
39
(
7
), pp.
3061
3071
.
42.
Herdem
,
M. S.
,
Farhad
,
S.
, and
Hamdullahpur
,
F.
,
2015
, “
Modeling and Parametric Study of a Methanol Reformate Gas-Fueled HT-PEMFC System for Portable Power Generation Applications
,”
Energy Convers. Manage.
,
101
, pp.
19
29
.
43.
Fremaux
,
S.
,
Behesti
,
S. M.
,
Ghassemi
,
H.
, and
Shahsavan-Markadeh
,
R.
,
2015
, “
An Experimental Study on Hydrogen-Rich Gas Production Via Steam Gasification of Biomass in Research-Scale Fluidized Bed
,”
Energy Convers. Manage.
,
91
, pp.
427
432
.
You do not currently have access to this content.