Hollows produced by wires and borosilicate tubes are two significant approaches for the storage and transport of healing agent for self-healing wind turbine blades. To compare the performance for the two approaches, sheet samples and prototype blades were molded with vacuum-assisted resin transfer molding (VARTM) and max-flexural strength was evaluated before and after the self-healing process. One millimeter outer diameter with 0.5 mm inner diameter borosilicate tubes were used to store and transport the healing agent. Dicyclopentadiene was used as the healing agent and Grubbs' first-generation catalyst was used to initiate polymerization. To obtain the same structure of the tube, a lost-wax method was applied twice to form hollows with 1 mm outer diameter and 0.5 mm inner diameter. Since the samples need to be heated to form the hollows, the effect of the heating process on flexural strength was investigated. The flexural strength of the samples showed to be enhanced with the heating process. The percentage improval for flexural strength was 14.18% at 120 °C, 21.79% at 135 °C, and 10.89% at 150 °C. The growth trend continued until 135 °C and decreased after 135 °C. The toughness of the samples was also weakened. With the heating process, the initial and post self-healing flexural strength between samples with tubes and samples with hollows showed little difference. The recovery percentage of samples with tubes was 81.55%, while that of samples with hollows was 81.92%. Without the heating process, the initial and post self-healing flexural strength between samples with tubes and samples with hollows also showed little difference. The recovery percentage of samples with tubes was 89.52%, while that of samples with hollows was 89.46%. The space between the tubes/hollows greatly affected the flexural strength. The flexural strength of samples with a larger space between tubes/hollows was higher than that of samples with a smaller space between tubes/samples. For the prototype wind turbine blade, the initial and post self-healing flexural strength followed the same trend. For samples with hollows, the ratio of the inner diameter to outer diameter can be close to one so the walls can be very thin improving storage and transport efficiency.

References

References
1.
Amano
,
R.
,
2017
, “
Review of Wind Turbine Research in the 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
2.
Tarfaoui
,
M. M.
,
Shah
,
O. R.
, and
Nachtane
,
M. M.
,
2019
, “
Design and Optimization of Composite Off Shore Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051204
.
3.
Brøndsted
,
P.
,
Lilholt
,
H.
, and
Lystrup
,
A.
,
2005
, “
Composite Materials for Wind Power Turbine Blades
,”
Ann. Rev. Mater. Sci.
,
35
(
1
), pp.
505
538
.
4.
Yuji
,
O.
, and
Koichi
,
W. A.
,
2019
, “
New Approach Toward Power Output Enhancement Using Multirotor Systems With Shrouded Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051203
.
5.
Chou
,
J. S.
,
Chiu
,
C. K.
,
Huang
,
I. K.
, and
Chi
,
K. N.
,
2013
, “
Failure Analysis of Wind Turbine Blade Under Critical Wind Loads
,”
Eng. Failure Anal.
,
27
(
6
), pp.
99
118
.
6.
Simla
,
T.
,
Stanek
,
W.
, and
Czarnowska
,
L.
,
2018
, “
Thermo-Ecological Cost of Electricity Generated in Wind Turbine Systems
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
031201
.
7.
Astolfi
,
D.
,
Castellani
,
F.
, and
Terzi
,
L.
,
2019
, “
Definition and Interpretation of Wind Farm Efficiency in Complex Terrain: A Discussion
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
055501
.
8.
Astolfi
,
D.
,
Castellani
,
F.
,
Fravolini
,
M.
,
Cascianelli
,
S.
, and
Terzi
,
L.
,
2019
, “
Precision Computation of Wind Turbine Power Upgrades: An Aerodynamic and Control Optimization Test Case
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051205
.
9.
White
,
S.
,
Sottos
,
N.
,
Geubelle
,
P.
,
Moore
,
J.
,
Kessler
,
M.
,
Sriram
,
S.
,
Brown
,
E.
, and
Viswanathan
,
S.
,
2001
, “
Autonomic Healing of Polymer Composites
,”
Nature
,
409
(
6822
), pp.
794
797
.
10.
Bekas
,
D. G.
,
Tsirka
,
K.
,
Baltzis
,
D.
, and
Paipetis
,
A. S.
,
2016
, “
Self-healing Materials: A Review of Advances in Materials, Evaluation, Characterization, and Monitoring Techniques
,”
Composites Part B
,
87
(
2016
), pp.
92
119
.
11.
Zhang
,
H.
, and
Yang
,
J.
,
2014
, “
Development of Self-Healing Polymers Via Amine-Epoxy Chemistry: I. Properties of Healing Agent Carriers and the Modeling of a two-Part Self-Healing System
,”
Smart Mater. Struct.
,
23
(
6
), p.
065003
.
12.
Toohey
,
K. S.
,
Sottos
,
N. R.
,
Lewis
,
J. A.
,
Moore
,
J. S.
, and
White
,
S. R.
,
2007
, “
Self-Healing Materials With Microvascular Networks
,”
Nat. Mater.
,
6
(
8
), pp.
581
585
.
13.
Hamilton
,
A. R.
,
Sottos
,
N. R.
, and
White
,
S. R.
,
2010
, “
Self-Healing of Internal Damage in Synthetic Vascular Materials
,”
Adv. Mater.
,
22
(
45
), pp.
5159
5163
.
14.
Norris
,
C. J.
,
Bond
,
I. P.
, and
Trask
,
R. S.
,
2011
, “
Interactions Between Propagating Cracks and Bioinspired Self-Healing Vascules Embedded in Glass Fibre Reinforced Composites
,”
Compos. Sci. Technol.
,
71
(
6
), pp.
847
853
.
15.
Peterson
,
A. M.
,
Kotthapalli
,
H.
,
Rahmathullah
,
M. A. M.
, and
Palmese
,
G. R.
,
2012
, “
Investigation of Interpenetrating Polymer Networks for Self-Healing Applications
,”
Compos. Sci. Technol.
,
72
(
2
), pp.
330
336
.
16.
Grunenfelder
,
L. K.
,
Suksangpanya
,
N.
,
Salinas
,
C.
,
Milliron
,
G.
,
Yaraghi
,
N.
,
Herrera
,
S.
,
Evans-Lutterodt
,
K.
,
Nutt
,
S. R.
,
Zavattieri
,
P.
, and
Kisailus
,
D.
,
2014
, “
Bio-inspired Impact-Resistant Composites
,”
Acta Biomater.
,
10
(
9
), pp.
3997
4008
.
17.
Esser-Kahn
,
A. P.
,
Thakre
,
P. R.
,
Dong
,
H.
,
Patrick
,
J. F.
,
Vlasko-Vlasov
,
V. K.
,
Sottos
,
N. R.
,
Moore
,
J. S.
, and
White
,
S. R.
,
2011
, “
Three-Dimensional Micro Vascular Fiber-Reinforced Composites
,”
Adv. Mater.
,
23
(
32
), pp.
3654
3658
.
18.
Yang
,
T.
,
Wang
,
C. H.
,
Zhang
,
J.
,
He
,
S.
, and
Mouritz
,
A. P.
,
2012
, “
Toughening and Self-Healing of Epoxy Matrix Laminates Using Mendable Polymer Stitching
,”
Compos. Sci. Technol.
,
72
(
12
), pp.
1396
1401
.
19.
Patrick
,
J. F.
,
Hart
,
K. R.
,
Krull
,
B. P.
,
Diesendruck
,
C. E.
,
Moore
,
J. S.
,
White
,
S. R.
, and
Sottos
,
N. R.
,
2014
, “
Continuous Self-Healing Life Cycle in Vascularized Structural Composites
,”
Adv. Mater.
,
26
(
25
), pp.
4302
4308
.
20.
Motuku
,
M.
,
Vaidya
,
U. K.
, and
Janowski
,
G. M.
,
1999
, “
Parametric Studies on Self-Repairing Approaches for Resin Infused Composites Subjected to Low Velocity Impact
,”
Smart Mater. Struct.
,
8
(
5
), pp.
623
638
.
21.
Zainuddin
,
S.
,
Arefin
,
T.
,
Fahim
,
A.
,
Hosur
,
M. V.
,
Tyson
,
J. D.
,
Kumar
,
A.
,
Trovillion
,
J.
, and
Jeelani
,
S.
,
2014
, “
Recovery and Improvement in low-Velocity Impact Properties of e-Glass/Epoxy Composites Through Novel Self-Healing Technique
,”
Compos. Struct.
,
108
(
1
), pp.
277
286
.
22.
Matt
,
A. K. K.
,
Beyhaghi
,
S.
,
Amano
,
R.
, and
Guo
,
J.
,
2017
, “
Self-Healing of Wind Turbine Blades Using Micro-Scale Vascular Vessels
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051208
.
23.
Shen
,
R.
,
Amano
,
R. S.
,
Lewinski
,
G.
, and
Matt
,
A. K. K.
,
2019
, “
A New Vascular System Highly Efficient in the Storage and Transport of Healing Agent for Self-Healing Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
141
, p.
051212
.
24.
Kessler
,
M. R.
,
Sottos
,
N. R.
, and
White
,
S. R.
,
2003
, “
Self-Healing Structural Composite Materials
,”
Composites Part A
,
34
(
8
), pp.
743
753
.
25.
ASTM
,
2015
, “
Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials
,”
ASTM International
,
West Conshohocken, PA
,
ASTM
Paper No. ASTM D7264/D7264M-15.
26.
Matt
,
A. K. K.
,
2016
, “
Advanced Self-Healing Polymer Composites for Wind Turbine Blades
” Master dissertation,
University of Wisconsin- Milwaukee
,
Milwaukee, WI
.
27.
Schubel
,
P. J.
, and
Crossley
,
R. J.
,
2012
, “
Wind Turbine Blade Design
,”
Energies
,
5
(
9
), pp.
3425
3449
.
You do not currently have access to this content.