Hydraulic fracturing stimulation has become a routine for the development of shale oil and gas reservoirs, which creates large volumes of fracturing networks by helping the hydrocarbon to transport quickly into the wellbore. However, the optimal fracture spacing distance and fracture conductivity are still unclear for the field practice, even though the technique has improved significantly over the last several years. In this work, an analytical method is proposed to address it. First, the analytical production rate for a single fracture is proposed, and then, we apply Duhamel principle to obtain the production rate of a horizontal well with multifractures. Based on this model, the flow regimes and essential affecting factors including fracture spacing, fracture conductivity, and skin factor are analyzed in this work. The optimal values and suggestion are provided based on the simulation results.

References

References
1.
Energy Information Administration
,
2018
, “
Annual Energy Outlook 2018: With Projections to 2050
,”
Government Printing Office
.
2.
Huang
,
X.
,
Lv
,
K.
,
Sun
,
J.
,
Lu
,
Z.
,
Bai
,
Y.
,
Shen
,
H.
, and
Wang
,
J.
,
2019
, “
Enhancement of Thermal Stability of Drilling Fluid Using Laponite Nanoparticles Under Extreme Temperature Conditions
,”
Mater. Lett.,
248
(
11
), pp.
146
149
.
3.
Zhang
,
F.
, and
Yang
,
D.
,
2017
, “
Effects of Non-Darcy Flow and Penetrating Ratio on Performance of Horizontal Wells With Multiple Fractures in a Tight Formation
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
032903
.
4.
Hou
,
X.
,
Zhang
,
X.
, and
Guo
,
B.
,
2019
, “
Mathematical Modeling of Fluid Flow to Unconventional Oil Wells With Radial Fractures and Its Testing With Field Data
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070702
.
5.
Tan
,
Y.
,
Li
,
H.
,
Zhou
,
X.
,
Jiang
,
B.
,
Wang
,
Y.
, and
Zhang
,
N.
,
2018
, “
A Semi-Analytical Model for Predicting Horizontal Well Performances in Fractured Gas Reservoirs With Bottom-Water and Different Fracture Intensities
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102905
.
6.
Ahn
,
C. H.
,
Dilmore
,
R.
, and
Wang
,
J. Y.
,
2016
, “
Modeling of Hydraulic Fracture Propagation in Shale gas Reservoirs: A Three-Dimensional, Two-Phase Model
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012903
.
7.
Seales
,
M. B.
,
Ertekin
,
T.
, and
Wang
,
Y. J.
,
2017
, “
Recovery Efficiency in Hydraulically Fractured Shale gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
04290120
.
8.
Gringarten
,
A. C.
, and
Ramey
,
H. J.
, Jr.
,
1973
, “
The Use of Source and Green’s Functions in Solving Unsteady-Flow Problems in Reservoirs
,”
SPE J.
,
13
(
5
), pp.
285
296
.
9.
Gringarten
,
A. C.
,
Ramey
,
H. J.
, Jr.
, and
Raghavan
,
R.
,
1974
, “
Unsteady-State Pressure Distributions Created by a Well With a Single Infinite-Conductivity Vertical Fracture
,”
SPE J.
,
14
(
4
), pp.
347
360
.
10.
Cinco
,
L.
,
Samaniego
,
V.
, and
Dominguez
,
A.
,
1978
, “
Transient Pressure Behavior for a Well With a Finite-Conductivity Vertical Fracture
,”
SPE J.
,
18
(
4
), pp.
253
264
.
11.
Cinco-Ley
,
H.
, and
Meng
,
H. Z.
,
1988
, “
Pressure Transient of Wells With Finite Conductivity Vertical Fractures in Double Porosity Reservoirs
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Oct. 2–5
, SPE 18172-MS.
12.
Blasingame
,
T. A.
, and
Poe
,
B. D.
,
1993
, “
Semianalytic Solutions for a Well With a Single Finiteconductivity Vertical Fracture
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Oct. 3–6
, SPE 26424.
13.
Kuchuk
,
F. J.
,
Goode
,
P. A.
,
Wilkinson
,
D. J.
, and
Thambynayagam
,
R. K. M.
,
1991
, “
Pressure Transient Behavior of Horizontal Wells With and Without Gas Cap or Aquifer
,”
SPE Form. Eval.
,
6
(
01
), pp.
86
94
.
14.
Lee
,
S. T.
, and
Brockenbrough
,
J. R.
,
1986
, “
A New Approximate Analytic Solution for Finite-Conductivity Vertical Fractures
,”
SPE Form. Eval.
,
1
(
01
), pp.
75
88
.
15.
Meyer
,
B. R.
,
Bazan
,
L. W.
,
Jacot
,
R. H.
, and
Lattibeaudiere
,
M. G.
,
2010
, “
Optimization of Multiple Transverse Hydraulic Fractures in Horizontal Wellbores
,”
Proceedings of the SPE Unconventional Gas Conference
,
Pittsburgh, PA
,
Feb. 23–25
, SPE 131732.
16.
Brown
,
M.
,
Ozkan
,
E.
,
Raghavan
,
R.
, and
Kazemi
,
H.
,
2011
, “
Practical Solutions for Pressure-Transient Responses of Fractured Horizontal Wells in Unconventional Shale Reservoirs
,”
SPE Reservoir Eval. Eng.
,
14
(
6
), pp.
663
676
.
17.
Fan
,
D.
, and
Ettehadtavakkol
,
A.
,
2017
, “
Analytical Model of Gas Transport in Heterogeneous Hydraulically-Fractured Organic-Rich Shale Media
,”
Fuel
,
207
(
10
), pp.
625
640
.
18.
Pang
,
Y.
,
Soliman
,
M. Y.
, and
Sheng
,
J.
,
2018
, “
Investigating Gas-Adsorption, Stress-Dependence, and Non-Darcy-Flow Effects on Gas Storage and Transfer in Nanopores by Use of Simplified Local Density Model
,”
SPE Reservoir Eval. Eng.
,
21
(
1
), pp.
73
95
.
19.
Wang
,
W. D.
,
Shahvali
,
M.
, and
Su
,
Y. L.
,
2016
, “
Analytical Solutions for a Quad-Linear Flow Model Derived for Multistage Fractured Horizontal Wells in Tight Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012905
.
20.
Houze
,
O. P.
,
Horne
,
R. N.
, and
Ramey
,
H. J.
, Jr.
,
1988
, “
Pressure-Transient Response of an Infinite-Conductivity Vertical Fracture in a Reservoir With Double-Porosity Behavior
,”
SPE Form. Eval.
,
3
(
3
), pp.
510
518
.
21.
Ozkan
,
E.
, and
Raghavan
,
R.
,
1991
, “
New Solutions for Well-Test-Analysis Problems: Part 2 Computational Considerations and Applications
,”
SPE Form. Eval.
,
6
(
3
), pp.
369
378
.
22.
Stehfest
,
H.
,
1970
, “
Algorithm 368: Numerical Inversion of Laplace Transforms [D5]
,”
Commun. ACM
,
13
(
1
), pp.
47
49
.
23.
Feng
,
Q.
,
Wang
,
S.
,
Zhang
,
W.
,
Song
,
Y.
, and
Song
,
S.
,
2013
, “
Characterization of High-Permeability Streak in Mature Waterflooding Reservoirs Using Pressure Transient Analysis
,”
J. Pet. Sci. Eng.,
110
(
8
), pp.
55
65
.
24.
Wan
,
J.
, and
Aziz
,
K.
,
2002
, “
Semi-Analytical Well Model of Horizontal Wells With Multiple Hydraulic Fractures
,”
SPE J.
,
7
(
4
), pp.
437
445
.
25.
Wilkinson
,
D. J.
,
1989
, “
New Results for Pressure Transient Behavior of Hydraulically Fractured Wells
,”
Proceedings of the Low Permeability Reservoirs Symposium
,
Denver, CO
,
Mar. 6–8
, SPE 18950.
26.
Luo
,
W.
,
Wang
,
X.
,
Liu
,
P.
, and
Tian
,
Q.
,
2018
, “
A Simple and Accurate Calculation Method for Finite-Conductivity Fracture
,”
J. Pet. Sci. Eng.,
161
(
11
), pp.
590
598
.
27.
Chen
,
Z.
,
Liao
,
X.
,
Zhao
,
X.
,
Dou
,
X.
, and
Zhu
,
L.
,
2015
, “
Performance of Horizontal Wells With Fracture Networks in Shale Gas Formation
,”
J. Pet. Sci. Eng.,
133
(
7
), pp.
646
664
.
28.
Chen
,
Z.
,
Liao
,
X.
,
Zhao
,
X.
,
Lv
,
S.
, and
Zhu
,
L.
,
2016
, “
A Semianalytical Approach for Obtaining Type Curves of Multiple-Fractured Horizontal Wells With Secondary-Fracture Networks
,”
SPE J.
21
(
2
), pp.
538
549
.
29.
Jia
,
P.
,
Cheng
,
L.
, and
Clarkson
,
C. R.
,
2017
, “
A Laplace-Domain Hybrid Model for Representing Flow Behavior of Multifractured Horizontal Wells Communicating Through Secondary Fractures in Unconventional Reservoirs
,”
SPE J.
,
22
(
6
), pp.
1856
1876
.
30.
Wang
,
X.
, and
Sheng
,
J. J.
,
2017
, “
Effect of Low-Velocity Non-Darcy Flow on Well Production Performance in Shale and Tight Oil Reservoirs
,”
Fuel
,
190
(
2
), pp.
41
46
.
31.
Wang
,
X.
,
Yang
,
Z.
,
Sun
,
Y.
, and
Liu
,
X.
,
2011
, “
Experimental and Theoretical Investigation of Nonlinear Flow in Low Permeability Reservoir
,”
Proc. Environ. Sci.
,
11
, pp.
1392
1399
.
32.
Xu
,
J.
,
Chen
,
B.
,
Sun
,
B.
, and
Jiang
,
R.
,
2019
, “
Flow Behavior of Hydraulic Fractured Tight Formations Considering Pre-Darcy Flow Using EDFM
,”
Fuel
,
241
(
2
), pp.
1145
1163
.
33.
Prada
,
A.
, and
Civan
,
F.
,
1999
, “
Modification of Darcy’s Law for the Threshold Pressure Gradient
,”
J. Pet. Sci. Eng.
,
22
(
4
), pp.
237
240
.
34.
Javadpour
,
F.
,
McClure
,
M.
, and
Naraghi
,
M. E.
,
2015
, “
Slip-Corrected Liquid Permeability and Its Effect on Hydraulic Fracturing and Fluid Loss in Shale
,”
Fuel
,
160
(
9
), pp.
549
559
.
35.
Afsharpoor
,
A.
, and
Javadpour
,
F.
,
2016
, “
Liquid Slip Flow in a Network of Shale Noncircular Nanopores
,”
Fuel
,
180
(
9
), pp.
580
590
.
36.
Majumder
,
M.
,
Chopra
,
N.
,
Andrews
,
R.
, and
Hinds
,
B. J.
,
2005
, “
Nanoscale Hydrodynamics: Enhanced Flow in Carbon Nanotubes
,”
Nature
,
438
(
7064
), pp.
44
44
.
37.
Secchi
,
E.
,
Marbach
,
S.
,
Niguès
,
A.
,
Stein
,
D.
,
Siria
,
A.
, and
Bocquet
,
L.
,
2016
, “
Massive Radius-Dependent Flow Slippage in Carbon Nanotubes
,”
Nature
,
537
(
7619
), pp.
210
213
.
38.
Nie
,
R. S.
,
Meng
,
Y. F.
,
Jia
,
Y. L.
,
Zhang
,
F. X.
,
Yang
,
X. T.
, and
Niu
,
X. N.
,
2012
, “
Dual Porosity and Dual Permeability Modeling of Horizontal Well in Naturally Fractured Reservoir
,”
Transp. Porous Media
,
92
(
1
), pp.
213
235
.
39.
Stehfest
,
H.
,
1970
, “
Remark on Algorithm 368: Numerical Inversion of Laplace Transforms
,”
Commun. ACM
,
13
(
10
), p.
624
.
40.
Van Everdingen
,
A. F.
, and
Hurst
,
W.
,
1949
, “
The Application of the Laplace Transformation to Flow Problems in Reservoirs
,”
J. Pet. Technol.
,
1
(
12
), pp.
305
324
.
You do not currently have access to this content.