T-junctions have been applied in water-control structures. A comprehensive understanding of shunt characteristics can contribute to the optimal design of T-junctions. In this work, we seek to understand the shunt ratio of fluids with different viscosities in a T-junction and to achieve a greater shunt ratio. The computational fluid dynamics (CFD) approach is applied to study the influence of the properties, such as the fluid viscosity, the branch angle, the channel shape, and the flow rate, on the shunt ratio in a T-junction. The viscosity of oil can be divided into three intervals, and the optimal angles of the T-junction are different in each interval. For the fluid viscosity in the 1–20 cP range, the optimal branch angle is in the 45–60 deg range. For the fluid viscosity in the 20–65 cP range, the branch angle should be designed to be 45 deg. For the viscosity greater than 65 cP, the branch angle should be designed to be 75 deg. The appearance of the eddy and secondary flow will reduce the flow. The secondary flow and eddy intensity on the branch increase with increasing angle. The secondary flow intensity of the main channel decreases gradually with the increase in the angle. This study provides an important guidance for the design of automatic water control valve tools.

References

References
1.
Enden
,
G.
,
Israeli
,
M.
, and
Dinnar
,
U.
,
1985
, “
A Numerical Simulation of the Flow in a T-Type Bifurcation and Its Application to an “End to Side” Fistula
,”
ASME J. Biomech. Eng.
,
107
(
4
), pp.
321
326
.
2.
Kamisli
,
F.
,
2006
, “
Laminar Flow of a Non-Newtonian Fluid in Channels With Wall Suction or Injection
,”
Int. J. Eng. Sci.
,
44
(
10
), pp.
650
661
.
3.
Kamisli
,
F.
,
2008
, “
Second Law Analysis of a Disturbed Flow in a Thin Slit With Wall Suction and Injection
,”
Int. J. Heat Mass Transfer.
,
51
(
15–16
), pp.
3985
4001
.
4.
Bajura
,
R. A.
,
1971
, “
A Model for Flow Distribution in Manifolds
,”
J. Eng. Power
,
93
(
1
), pp.
7
12
.
5.
Miao
,
Z. Q.
, and
Xu
,
T. M.
,
2006
, “
Single Phase Flow Characteristics in the Headers and Connecting Tube of Parallel Tube Platen Systems
,”
Appl. Thermal Eng.
,
26
(
4
), pp.
396
402
.
6.
Wang
,
J. Y.
,
Priestman
,
G. H.
, and
Wu
,
D. D.
,
2001
, “
A Theoretical Analysis of Uniform Flow Distribution for the Admission of High-Energy Fluids to Steam Surface Condenser
,”
ASME J. Eng. Gas Turbine Power
,
123
(
2
), pp.
472
475
.
7.
Pigford
,
R. L.
,
Ashraf
,
M.
, and
Mlron
,
Y. D.
,
1983
, “
Flow Distribution in Piping Manifolds
,”
Ind. Eng. Chem. Fundam.
,
22
(
4
), pp.
463
471
.
8.
Wang
,
J. Y.
,
Gao
,
Z. L.
,
Gan
,
G. H.
, and
Wu
,
D. D.
,
2001
, “
Analytical Solution of Flow Coefficients for a Uniformly Distributed Porous Channel
,”
Chem. Eng. J.
,
84
(
1
), pp.
1
6
.
9.
Hanspal
,
N. S.
,
Waghode
,
A. N.
,
Nassehi
,
V.
, and
Wakeman
,
R. J.
,
2009
, “
Development of a Predictive Mathematical Model for Coupled Stokes/Darcy Flows in Cross-Flow Membrane Filtration
,”
Chem. Eng. J.
,
149
(
1–3
), pp.
132
142
.
10.
Chou
,
H. T.
, and
Lei
,
H. C.
,
2008
, “
Outflow Uniformity Along a Continuous Manifold
,”
J. Hydraulic Eng.
,
134
(
9
), pp.
1383
1388
.
11.
Anwar
,
A. A.
,
1999
, “
Friction Correction Factors for Center-Pivots
,”
J. Irrig. Drain. Eng.
,
125
(
5
), pp.
280
286
.
12.
Zhou
,
X.
,
Yuan
,
Q.
,
Rui
,
Z.
,
Wang
,
H.
,
Feng
,
J.
,
Zeng
,
F.
, and
Zhang
,
L.
,
2019
, “
Feasibility Study of CO2 Huff ‘n’ Puff Process to Enhance Heavy Oil Recovery Via Long Core Experiments
,”
Appl. Energy
,
236
, pp.
526
539
.
13.
Cui
,
G.
,
Ren
,
S.
,
Ezekiel
,
J.
,
Zhang
,
L.
, and
Wang
,
H.
,
2018
, “
The Influence of Complicated Fluid-Rock Interactions on the Geothermal Exploitation in the CO2 Plume Geothermal System
,”
Appl. Energy
,
227
, pp.
49
63
.
14.
Teng
,
B.
,
Cheng
,
L.
,
Huang
,
S.
, and
Li
,
H. A.
,
2018
, “
Production Forecasting for Shale Gas Reservoirs With Fast Marching-Succession of Steady States Method
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032913
.
15.
Tan
,
Y.
,
Li
,
H.
,
Zhou
,
X.
,
Wang
,
K.
,
Jiang
,
B.
, and
Zhang
,
N.
,
2019
, “
Inflow Characteristics of Horizontal Wells in Sulfur Gas Reservoirs: A Comprehensive Experimental Investigation
,”
Fuel
,
238
, pp.
267
274
.
16.
Tong
,
Z.
,
Zhao
,
G.
, and
Wei
,
S.
,
2018
, “
A Novel Intermittent Gas Lifting and Monitoring System Toward Liquid Unloading for Deviated Wells in Mature Gas Field
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052906
.
17.
Zhou
,
X.
,
Yuan
,
Q.
,
Peng
,
X.
,
Zeng
,
F.
, and
Zhang
,
L.
,
2018
, “
A Critical Review of the CO2 Huff ‘n’ Puff Process for Enhanced Heavy oil Recovery
,”
Fuel
,
215
, pp.
813
824
.
18.
Li
,
H.
,
Tan
,
Y.
,
Jiang
,
B.
,
Wang
,
Y.
, and
Zhang
,
N.
,
2018
, “
A Semi-Analytical Model for Predicting Inflow Profile of Horizontal Wells in Bottom-Water Gas Reservoir
,”
J. Pet. Sci. Eng.
,
160
, pp.
351
362
.
19.
Qin
,
J.
,
Cheng
,
S.
,
He
,
Y.
,
Wang
,
Y.
,
Feng
,
D.
,
Yang
,
Z.
,
Li
,
D.
, and
Yu
,
H.
,
2019
, “
Decline Curve Analysis of Fractured Horizontal Wells Through Segmented Fracture Model
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012903
.
20.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Lu
,
J.
,
Chen
,
G.
,
Ling
,
K.
, and
Patil
,
S.
,
2018
, “
A Quantitative Framework for Evaluating Unconventional Well Development
,”
J. Pet. Sci. Eng.
,
166
, pp.
900
905
.
21.
Tan
,
Y.
,
Li
,
H.
,
Zhou
,
X.
,
Jiang
,
B.
,
Wang
,
Y.
, and
Zhang
,
N.
,
2018
, “
A Semi-Analytical Model for Predicting Horizontal Well Performances in Fractured Gas Reservoirs With Bottom-Water and Different Fracture Intensity
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102905
.
22.
Zhang
,
N.
,
Li
,
H.
,
Liu
,
Y.
,
Shan
,
J.
,
Tan
,
Y.
, and
Li
,
Y.
,
2019
, “
A New Autonomous Inflow Control Device Designed for a Loose Sand Oil Reservoir With Bottom Water
,”
J. Pet. Sci. Eng.
,
178
, pp.
344
355
.
23.
Zhou
,
X.
,
Yuan
,
Q.
,
Zhang
,
Y.
,
Wang
,
H.
,
Zeng
,
F.
, and
Zhang
,
L.
,
2019
,“
Performance Evaluation of CO2 Flooding Process in Tight oil Reservoir Via Experimental and Numerical Simulation Studies
,”
Fuel
,
236
, pp.
730
746
.
24.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Chun
,
J.
,
Li
,
Y.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
2018
, “
A Comprehensive Investigation on Performance of Oil and Gas Development in Nigeria: Technical and Non-Technical Analyses
,”
Energy
,
158
, pp.
666
680
.
25.
Li
,
Y.
,
Li
,
H.
, and
Li
,
Y.
,
2015
, “
Prediction Method of Bottom Water Coning Profile and Water Breakthrough Time in Bottom Water Reservoir Without Barrier
,”
Math. Probl. Eng.
,
2015
, pp.
1
6
.
26.
Prasun
,
S.
, and
Wojtanowicz
,
A. K.
,
2018
, “
Determination and Implication of Ultimate Water Cut in Well-Spacing Design for Developed Reservoirs With Water Coning
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082902
.
27.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Wang
,
Y.
,
Chen
,
Z.
, and
Yu
,
H.
,
2018
, “
Pressure-Transient Behavior of Multisegment Horizontal Wells With Nonuniform Production: Theory and Case Study
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
093101
.
28.
Huang
,
X.
,
Guo
,
X.
,
Zhou
,
X.
,
Lu
,
X.
,
Shen
,
C.
,
Qi
,
Z.
, and
Li
,
J.
,
2019
, “
Productivity Model for Water-Producing Gas Well in a Dipping Gas Reservoir With an Aquifer Considering Stress-Sensitive Effect
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022903
.
29.
Luo
,
W.
,
Li
,
H. T.
,
Wang
,
Y. Q.
, and
Wang
,
J. C.
,
2015
, “
A new Semi-Analytical Model for Predicting the Performance of Horizontal Wells Completed by Inflow Control Devices in Bottom-Water Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
1328
1339
.
30.
Least
,
B.
,
Bonner
,
A.
, and
Regulacion
,
R.
,
2013
, “
Autonomous ICD Installation Success in Ecuador Heavy Oil: A Case Study
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 30–Oct. 2
, SPE Paper No. SPE-166495-MS.
31.
Least
,
B.
,
Greci
,
S.
,
Konopczynski
,
M.
, and
Thornton
,
K.
,
2013
, “
Inflow Control Devices Improve Production in Heavy Oil Well
,”
SPE Middle East Intelligent Energy Conference and Exhibition
,
Manama, Bahrain
,
Oct. 28–30
, SPE Paper No. SPE-167414-MS.
32.
Gómez
,
M.
,
Anaya
,
A. F.
,
Araujo
,
Y. E.
,
Parra
,
W.
,
Uzcategui
,
M.
,
Bolaños
,
V.
,
Mayorga
,
E.
, and
Porturas
,
F. A.
,
2015
, “
Autonomous Inflow Control Devices (AICD) Application in Horizontal Wells Completions in Rubiales Area, Heavy Oil Reservoir
,”
SPE Middle East Intelligent Oil and Gas Conference and Exhibition
,
Abu Dhabi, UAE
,
Sept. 15–16
, SPE Paper No. SPE-176752-MS.
33.
Corona
,
G.
,
Fripp
,
M.
,
Kalyani
,
T.
, and
Yin
,
W.
,
2016
, “
Fluidic Diode Autonomous Inflow Control Device for Heavy Oil Application
,”
SPE Heavy Oil Conference
,
Kuwait City, Kuwait
,
Dec. 6–8
, SPE Paper No. SPE-184094-MS.
34.
Al-Kadem
,
M.
,
Al-Muhaish
,
A. R.
,
Lee
,
B. O.
, and
Least
,
B.
,
2015
, “
First Autonomous ICD Installation in Saudi Arabia-Modeling a Field Case
,”
SPE Saudi Arabia Section Annual Technical Symposium and Exhibition
,
Al-Khobar, Saudi Arabia
,
Apr. 21–23
, SPE Paper No. SPE-177997-MS.
35.
Iqbal
,
F.
,
Iskandar
,
R.
, and
Radwan
,
E.
,
2015
, “
Autonomous Inflow Control Device—A Case Study of First Successful Field Trial in GCC for Water Conformance
,”
SPE Abu Dhabi International Petroleum Exhibition and Conference
,
Abu Dhabi, UAE
,
Nov. 9–12
, SPE Paper No. SPE-177927-MS.
36.
Fripp
,
M.
,
Zhao
,
L.
, and
Least
,
B.
,
2013
, “
The Theory of a Fluidic Diode Autonomous Inflow Control Device
,”
SPE Middle East Intelligent Energy Conference and Exhibition
,
Manama, Bahrain
,
Oct. 28–30
, SPE Paper No. SPE-167415-MS.
37.
Wang
,
X. Q.
,
Wang
,
Z. M.
, and
Zeng
,
Q. S.
,
2014
, “
A Novel Autonomous Inflow Control Device: Design, Structure Optimization, and Fluid Sensitivity Analysis
,”
International Petroleum Technology Conference
,
Kuala Lumpur, Malaysia
,
Dec. 10–12
, IPTC Paper No. IPTC-17758-MS.
38.
Least
,
B.
,
Greci
,
S.
, and
Wileman
,
A.
,
2013
, “
Fluidic Diode Autonomous Inflow Control Device Range 3B-Oil, Water, and Gas Flow Performance Testing
,”
SPE Kuwait Oil and Gas Show and Conference
,
Mishref, Kuwait
,
Oct. 8–10
, SPE Paper No. SPE-167379-MS.
39.
Shams
,
A.
,
Edh
,
N.
,
Angele
,
K.
,
Veber
,
P.
,
Howard
,
R.
,
Braillard
,
O.
,
Chapuliot
,
S.
,
Severac
,
E.
,
Karabaki
,
E.
,
Seichter
,
J.
, and
Niceno
,
B.
,
2018
, “
Synthesis of a CFD Benchmarking Exercise for a T-Junction With Wall
,”
Nucl. Eng. Des.
,
330
, pp.
199
216
.
40.
Kikas
,
N. P.
,
1995
, “
Laminar Flow Distribution in Solar Systems
,”
Sol. Energy
,
54
(
4
), pp.
209
217
.
41.
Shen
,
P. I.
,
1992
, “
The Effect of Friction on Flow Distribution in Dividing and Combining Flow Manifolds
,”
ASME J. Fluids Eng.
114
(
1
), pp.
121
123
.
42.
Bassiouny
,
M. K.
, and
Martin
,
H.
,
1984
, “
Flow Distribution and Pressure Drop in Plate Heat Exchanges. Part I. U-Type Arrangement
,”
Chem. Eng. Sci.
,
39
(
4
), pp.
693
700
.
43.
Heggemann
,
M.
,
Hirschberg
,
S.
,
Spiegel
,
L.
, and
Bachmann
,
C.
,
2007
, “
CFD Simulation and Experimental Validation of Fluid Flow in Liquid Distributors
,”
Trans I Chem. E, Part A, Chem. Eng. Res. Design
,
85
(
A1
), pp.
59
64
.
44.
Tonomura
,
O.
,
Tanaka
,
S.
,
Noda
,
M.
,
Kano
,
M.
,
Hasebe
,
S.
, and
Hashimoto
,
I.
,
2004
, “
CFD-based Optimal Design of Manifold in Plate-Fin Microdevices
,”
Chem. Eng. J.
,
101
(
1–3
), pp.
397
402
.
45.
Chen
,
A. W.
, and
Sparrow
,
E. M.
,
2009
, “
Turbulence Modelling for Flow in a Distribution Manifold
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1573
1581
.
46.
Yuan
,
J.
,
Rokni
,
M.
, and
Sunsen
,
B.
,
2001
, “
Simulation of Fully Developed Laminar Heat and Mass Transfer in Fuel Cell Ducts with Different Cross-Sections
,”
Int. J. Heat Mass Transfer
,
44
(
21
), pp.
4047
4058
.
47.
Kulkarni
,
A. V.
,
Roy
,
S. S.
, and
Joshi
,
J. B.
,
2007
, “
Pressure and Flow Distribution in Pipe and Ring Spargers: Experimental Measurements and CFD Simulation
,”
Chem. Eng. J.
,
133
(
1–3
), pp.
173
186
.
48.
Kapadia
,
S.
, and
Anderson
,
W. K.
,
2009
, “
Sensitivity Analysis for Solid Oxide Fuel Cells Using a Three-Dimensional Numerical Model
,”
J. Power Sources
,
189
(
2
), pp.
1074
1082
.
49.
Bajura
,
R. A.
, and
Jones
,
E. H.
,
1976
, “
Flow Distribution Manifolds
,”
ASME J. Fluids Eng.
,
98
(
4
), pp.
654
665
.
50.
Choi
,
S. H.
,
Shin
,
S.
, and
Cho
,
Y. I.
,
1993
, “
The Effects of the Reynolds Number and Width Ratio on the Flow Distribution in Manifolds of Liquid Cooling Modules for Electronic Packaging
,”
Int. Commun. Heat Mass Transfer
,
20
(
5
), pp.
607
617
.
51.
Yang
,
H.
,
Wang
,
Y.
,
Ren
,
M.
, and
Yang
,
X.
,
2017
, “
Effect of the Rectangular Exit-Port Geometry of a Distribution Manifold on the Flow Performance
,”
Appl. Therm. Eng.
,
117
, pp.
481
486
.
52.
Enger
,
M. L.
, and
Levy
,
I. M.
,
1929
, “
Pressure in Manifold Flow
,”
J. Am. Water Works Assoc.
,
21
(
5
), pp.
659
667
.
53.
Saieed
,
A.
,
Pao
,
W.
, and
Ali
,
H. M.
,
2018
, “
Prediction of Phase Separation in a T-Junction
,”
Exp. Therm. Fluid. Sci.
,
97
, pp.
160
179
.
54.
Chen
,
M.
,
Wang
,
J.
,
Zhi
,
Y.
, and
Gao
,
L. J.
,
2018
, “
Effect of the Ratio of the Branch Inflow to the Total Inflow on Evacuation Efficiency of Pedestrians Merging at T-Junctions
,”
Procedia Eng.
,
211
, pp.
70
77
.
55.
Chuang
,
G. Y.
, and
Ferng
,
Y. M.
,
2018
, “
Investigating Effects of Injection Angles and Velocity Ratios on Thermal-Hydraulic Behavior and Thermal Striping in a T-Junction
,”
Int. J. Therm. Sci.
,
126
, pp.
74
81
.
56.
Georgiou
,
M.
, and
Papalexandris
,
M. V.
,
2017
, “
Turbulent Mixing in T-Junctions: The Role of the Temperature as an Active Scalar
,”
Int. J. Heat Mass Transfer
,
115
, pp.
793
809
.
57.
Lu
,
P.
,
Zhao
,
L.
,
Deng
,
S.
,
Zhang
,
J.
,
Wen
,
J.
, and
Zhao
,
Q.
,
2018
, “
Simulation of Two-Phase Refrigerant Separation in Horizontal T-Junction
,”
Appl. Therm. Eng.
,
134
, pp.
333
340
.
58.
Fu
,
H.
,
Watkins
,
A. P.
, and
Yianneskis
,
M.
,
1994
, “
The Effects of Flow Split Ratio and Flow Rate in Manifolds
,”
Int. J. Numer. Methods Fluids
,
18
(
9
), pp.
871
886
.
59.
Wang
,
C.-C.
,
Yang
,
K. S.
,
Tsai
,
J. S.
, and
Chen
,
Y.
,
2011
, “
Characteristics of Flow Distribution in Compact Parallel Flow Heat Exchangers, Part I: Typical Inlet Header
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3226
3234
.
60.
Yang
,
M.
,
Li
,
H.
,
Xie
,
J.
,
Wang
,
Y.
,
Jiang
,
R.
,
Zhu
,
S.
, and
Li
,
Y.
,
2016
, “
The Theory of the Automatic Phase Selection Controller and Its Performance Analysis
,”
J. Petrol Sci. Eng.
,
144
, pp.
28
38
.
You do not currently have access to this content.