This experimental study endeavors to investigate the evolution of microexplosion phenomenon of water in biodiesel emulsion droplets with the base fuel (B5) containing 95% diesel and 5% of palm oil methyl ester (POME). Parameters such as water content varied from 9%, 12%, and 15%, surfactant dosages of 5%, 10%, and 15% and the hydrophilic–lipophilic balance (HLB) values of 6, 7, 8, and 9 were varied to study its impact on microexplosion phenomenon. Three different sizes of emulsion droplets of approximately Ø2.8 mm, Ø2.2 mm, and Ø0.3 mm were visualized for the evolution of microexplosion phenomenon under the Leidenfrost effect using hot plate as a heat source. The evolution of microexplosion phenomenon of parent droplets, puffing behavior, and waiting time was visualized with high-resolution images. It was observed that the coalescence process was the dominating factor in inducing the microexplosion, and the coalescence process can either be advanced or be delayed by the surfactant dosage. The waiting time for the microexplosion was found to be influenced by the surfactant dosage and the droplet size. The rate of phase change of emulsions and puffing was found to be influenced by the surfactant dosage. By analyzing the postbehavior of the child droplets formed after the microexplosion of the parent droplet, it was observed that the child droplets undergo a series of puffing process and eventually microexplosion phenomenon also. The size of the parent droplets has a significant influence on the size of the child droplet.

References

References
1.
Shinjo
,
J.
,
Xia
,
J.
,
Ganippa
,
L.
, and
Megaritis
,
A.
,
2014
, “
Physics of Puffing and Microexplosion of Emulsion Fuel Droplets
,”
Phys. Fluids
,
26
, p.
103302
.
2.
Agarwal
,
A. K.
,
Park
,
S.
,
Dhar
,
A.
,
Lee
,
C. S.
,
Park
,
S.
,
Gupta
,
T.
, and
Gupta
,
N. K.
,
2018
, “
Review of Experimental and Computational Studies on Spray, Combustion, Performance, and Emission Characteristics of Biodiesel Fueled Engines
,”
ASME J. Energy Resour. Technol.
,
140
, p.
120801
.
3.
Debbarma
,
S.
, and
Misra
,
R.
,
2017
, “
Effects of Iron Nanoparticles Blended Biodiesel on the Performance and Emission Characteristics of a Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
139
, p.
042212
.
4.
Ivanov
,
V. M.
, and
Nefedov
,
P.
,
1965
,
Experimental Investigation of the Combustion Process of Natural and Emulsified Liquid Fuels
,
National Aeronautics and Space Administration
,
Washington, DC
.
5.
Clercq
,
P.
,
Noll
,
B.
, and
Aigner
,
M.
,
2005
,
Modeling Evaporation and Secondary Atomization of Water-in-Multicomponent Oil Emulsion Droplets
,
DLR, German Aerospace Center, Institute of Combustion Technology
,
Stuttgart, Germany
.
6.
Fu
,
W. B.
,
Hou
,
L. Y.
,
Wang
,
L.
, and
Ma
,
F. H.
,
2002
, “
A Unified Model for the Micro-Explosion of Emulsified Droplets of Oil and Water
,”
Fuel Process. Technol.
,
79
, pp.
107
119
.
7.
Kimoto
,
K.
,
Owashi
,
Y.
, and
Omae
,
Y.
,
1986
, “
The Vaporizing Behavior of the Fuel Droplet of Water-in-Oil Emulsion on the Hot Surface
,”
Bull. JSME
,
29
, pp.
4247
4255
.
8.
Avulapati
,
M. M.
,
Ganippa
,
L. C.
,
Xia
,
J.
, and
Megaritis
,
A.
,
2016
, “
Puffing and Micro-Explosion of Diesel–Biodiesel–Ethanol Blends
,”
Fuel
,
166
, pp.
59
66
.
9.
Califano
,
V.
,
Calabria
,
R.
, and
Massoli
,
P.
,
2014
, “
Experimental Evaluation of the Effect of Emulsion Stability on Micro-Explosion Phenomena for Water-in-Oil Emulsions
,”
Fuel
,
117
, pp.
87
94
.
10.
Morozumi
,
Y.
, and
Saito
,
Y.
,
2010
, “
Effect of Physical Properties on Microexplosion Occurrence in Water-in-Oil Emulsion Droplets
,”
Energy Fuels
,
24
, pp.
1854
1859
.
11.
Watanabe
,
H.
,
Harada
,
T.
,
Matsushita
,
Y.
,
Aoki
,
H.
, and
Miura
,
T.
,
2009
, “
The Characteristics of Puffing of the Carbonated Emulsified Fuel
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3676
3684
.
12.
Suzuki
,
Y.
,
Harada
,
T.
,
Watanabe
,
H.
,
Shoji
,
M.
,
Matsushita
,
Y.
,
Aoki
,
H.
, and
Miura
,
T.
,
2011
, “
Visualization of Aggregation Process of Dispersed Water Droplets and the Effect of Aggregation on Secondary Atomization of Emulsified Fuel Droplets
,”
Proc. Combust. Inst.
,
33
, pp.
2063
2070
.
13.
Mura
,
E.
,
Josset
,
C.
,
Loubar
,
K.
,
Huchet
,
G.
, and
Bellettre
,
J.
,
2010
, “
Effect of Dispersed Water Droplet Size in Microexplosion Phenomenon for Water in Oil Emulsion
,”
Atomization Sprays
,
20
, pp.
791
799
.
14.
Khan
,
M. Y.
,
Karim
,
Z. A.
,
Aziz
,
A. R. A.
, and
Tan
,
I. M.
,
2017
, “
A Case Study on the Influence of Selected Parameters on Microexplosion Behavior of Water in Biodiesel Emulsion Droplets
,”
ASME J. Energy Resour. Technol.
,
139
, p.
022203
.
15.
Tarlet
,
D.
,
Mura
,
E.
,
Josset
,
C.
,
Bellettre
,
J.
,
Allouis
,
C.
, and
Massoli
,
P.
,
2014
, “
Distribution of Thermal Energy of Child-Droplets Issued From an Optimal Micro-Explosion
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1043
1054
.
16.
Chen
,
G.
, and
Tao
,
D.
,
2005
, “
An Experimental Study of Stability of Oil–Water Emulsion
,”
Fuel Process. Technol.
,
86
, pp.
499
508
.
17.
Solans
,
C.
,
Izquierdo
,
P.
,
Nolla
,
J.
,
Azemar
,
N.
, and
Garcia-Celma
,
M.
,
2005
, “
Nano-emulsions
,”
Curr. Opin. Colloid Interface Sci.
,
10
, pp.
102
110
.
18.
Yahaya Khan
,
M.
,
Abdul Karim
,
Z. A.
,
Abd Aziz
,
A. R.
,
Heikal
,
M.
, and
Crua
,
C.
,
2016
, “
Puffing and Microexplosion Behavior of Water in Pure Diesel Emulsion Droplets During Leidenfrost Effect
,”
Combust. Sci. Technol.
, pp.
1186
1197
. 10.1080/00102202.2016.1275593
19.
Abu-Zaid
,
M.
,
2004
, “
An Experimental Study of the Evaporation Characteristics of Emulsified Liquid Droplets
,”
Heat Mass Transf.
,
40
, pp.
737
741
.
20.
Tanaka
,
H.
,
Kadota
,
T.
,
Segawa
,
D.
,
Nakaya
,
S.
, and
Yamasaki
,
H.
,
2006
, “
Effect of Ambient Pressure on Micro-Explosion of an Emulsion Droplet Evaporating on a Hot Surface
,”
JSME Int. J. Ser. B
,
49
, pp.
1345
1350
.
21.
Mura
,
E.
,
Massoli
,
P.
,
Josset
,
C.
,
Loubar
,
K.
, and
Bellettre
,
J.
,
2012
, “
Study of the Micro-Explosion Temperature of Water in Oil Emulsion Droplets During the Leidenfrost Effect
,”
Exp. Therm. Fluid. Sci.
,
43
, pp.
63
70
.
22.
Yahaya Khan
,
M.
,
Abdul Karim
,
Z.
,
Aziz
,
A. R. A.
, and
Tan
,
I. M.
,
2016
, “
Experimental Study on Influence of Surfactant Dosage on Micro Explosion Occurrence in Water in Diesel Emulsion
,”
Appl. Mech. Mater.
,
819
, pp.
287
291
.
23.
Jeong
,
I.
,
Lee
,
K.-H.
, and
Kim
,
J.
,
2008
, “
Characteristics of Auto-Ignition and Micro-Explosion Behavior of a Single Droplet of Water-in-Fuel
,”
J. Mech. Sci. Technol.
,
22
, pp.
148
156
.
24.
Song
,
M.-G.
,
Cho
,
S.-H.
,
Kim
,
J.-Y.
, and
Kim
,
J.-D.
,
2002
, “
Novel Evaluation Method for the Water-in-Oil (W/O) Emulsion Stability by Turbidity Ratio Measurements
,”
Korean J. Chem. Eng.
,
19
, pp.
425
430
.
25.
Urbina-Villalba
,
G.
, and
García-Sucre
,
M.
,
2000
, “
Brownian Dynamics Simulation of Emulsion Stability
,”
Langmuir
,
16
, pp.
7975
7985
.
26.
Ochoterena
,
R.
,
Lif
,
A.
,
Nydén
,
M.
,
Andersson
,
S.
, and
Denbratt
,
I.
,
2010
, “
Optical Studies of Spray Development and Combustion of Water-in-Diesel Emulsion and Microemulsion Fuels
,”
Fuel
,
89
, pp.
122
132
.
27.
Khan
,
M. Y.
,
Abdul Karim
,
Z. A.
,
Aziz
,
A. R. A.
, and
Tan
,
I. M.
,
2014
, “
Experimental Investigation of Microexplosion Occurrence in Water in Diesel Emulsion Droplets During the Leidenfrost Effect
,”
Energy Fuels
,
28
, pp.
7079
7084
.
You do not currently have access to this content.