Engine knock remains one of the major barriers to further improve the thermal efficiency of spark-ignition (SI) engines. SI engine is usually operated at knock-limited spark advance (KLSA) to achieve possibly maximum efficiency with given engine hardware and fuel properties. Co-optimization of fuels and engines is promising to improve engine efficiency, and predictive computational fluid dynamics (CFD) models can be used to facilitate this process. However, cyclic variability of SI engine demands that multicycle results are required to capture the extreme conditions. In addition, Mach Courant–Friedrichs–Lewy (CFL) number of 1 is desired to accurately predict the knock intensity (KI), resulting in unaffordable computational cost. In this study, a new approach to numerically predict KLSA using large Mach CFL of 50 with ten consecutive cycle simulation is proposed. This approach is validated against the experimental data for a boosted SI engine at multiple loads and spark timings with good agreements in terms of cylinder pressure, combustion phasing, and cyclic variation. Engine knock is predicted with early spark timing, indicated by significant pressure oscillation and end-gas heat release. Maximum amplitude of pressure oscillation analysis is performed to quantify the KI, and the slope change point in KI extrema is used to indicate the KLSA accurately. Using a smaller Mach CFL number of 5 also results in the same conclusions, thus demonstrating that this approach is insensitive to the Mach CFL number. The use of large Mach CFL number allows us to achieve fast turn-around time for multicycle engine CFD simulations.

References

References
1.
ASTM International
,
2012
, “
Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel
,”
ASTM International
,
West Conshohocken, PA
, ASTM Paper No. D2699-12.
2.
ASTM International
,
2016
, “
Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel
,”
ASTM International
,
West Conshohocken, PA
, Standard No. D2700-16.
3.
Kalghatgi
,
G. T.
,
2001
, “
Fuel Anti-Knock Quality—Part I, Engine Studies
,”
SAE
Paper No. 2001-01-3584.
4.
Kalghatgi
,
G. T.
,
2001
, “
Fuel Anti-Knock Quality—Part I, Vehicle Studies—How Relevant Is Motor Octane Number (MON) for Modern Engines?
,”
SAE
Paper No. 2001-01-3585.
5.
Yates
,
A. D.
,
Swarts
,
A.
, and
Viljoen
,
C.
,
2005
, “
Correlating Auto-Ignition Delays and Knock-Limited Spark Advance Data for Different Types of Fuel
,”
SAE
Paper No. 2005-01-2083.
6.
Amer
,
A.
,
Babiker
,
H.
,
Chang
,
J.
,
Kalghatgi
,
G. T.
,
Adomeit
,
P.
,
Brassat
,
A.
, and
Günther
,
M.
,
2012
, “
Fuel Effects on Knock in a Highly Boosted Direct Injection Spark Ignition Engine
,”
SAE Int. J. Fuels Lubr.
,
5
(
3
), pp.
1048
1065
.
7.
Sluder
,
C. S.
,
Szybist
,
J. P.
,
McCormick
,
R. L.
,
Ratcliff
,
M. A.
, and
Zigler
,
B. T.
,
2016
, “
Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization
,”
SAE Int. J. Fuels Lubr.
,
9
(
1
), pp.
80
90
.
8.
Szybist
,
J. P.
, and
Splitter
,
D. A.
,
2016
, “
Pressure and Temperature Effects on Fuels With Varying Octane Sensitivity at High Load in SI Engines
,”
Combust. Flame
,
177
, pp.
49
66
.
9.
Eckert
,
P.
,
Kong
,
S.
, and
Reitz
,
R.
,
2003
, “
Modeling Autoignition and Engine Knock Under Spark Ignition Conditions
,”
SAE
Paper No. 2003-01-0011.
10.
Liang
,
L.
,
Reitz
,
R.
,
Iyer
,
C.
, and
Yi
,
J.
,
2007
, “
Modeling Knock in Spark-Ignition Engines Using a G-Equation Combustion Model Incorporating Detailed Chemical Kinetics
,”
SAE
Paper No. 2007-01-0165.
11.
Shao
,
J.
, and
Rutland
,
C.
,
2014
, “
Modeling Investigation of Auto- Ignition and Engine Knock by HO2
,”
SAE
Paper No. 2014-01-1221.
12.
Shao
,
J.
, and
Rutland
,
C. J.
,
2014
, “
Modeling Investigation of Different Methods to Suppress Engine Knock on a Small Spark Ignition Engine
,”
ASME J. Eng. Gas Turb. Power
,
137
(
6
), p.
61506
.
13.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102205
.
14.
Pan
,
J.
,
Wei
,
H.
,
Shu
,
G.
,
Pan
,
M.
,
Feng
,
D.
, and
Li
,
N.
,
2017
, “
LES Analysis for Auto-Ignition Induced Abnormal Combustion Based on a Downsized SI Engine
,”
Appl. Energy
,
191
, pp.
183
192
.
15.
Converge
,
2016
,
2.3 Theory Manual
,
Convergent Science Inc.
,
Middleton, WI
.
16.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
17.
Vermorel
,
O.
,
Richard
,
S.
,
Colin
,
O.
,
Angelberger
,
C.
,
Benkenida
,
A.
, and
Veynante
,
D.
,
2007
, “
Multi-Cycle LES Simulations of Flow and Combustion in a PFI SI 4-Valve Production Engine
,”
SAE
Paper No. 2007-01-0151.
18.
Granet
,
V.
,
Vermorel
,
O.
,
Lacour
,
C.
,
Enaux
,
B.
,
Dugué
,
V.
, and
Poinsot
,
T.
,
2012
, “
Large-Eddy Simulation and Experimental Study of Cycle-to-Cycle Variations of Stable and Unstable Operating Points in a Spark Ignition Engine
,”
Combust. Flame
,
159
(
4
), pp.
1562
1575
.
19.
Schmitt
,
M.
,
Hu
,
R.
,
Wright
,
Y. M.
,
Soltic
,
P.
, and
Boulouchos
,
K.
,
2015
, “
Multiple Cycle LES Simulations of a Direct Injection Natural Gas Engine
,”
Flow Turbul. Combust
,
95
(
4
), pp.
645
668
.
20.
Zhao
,
L.
,
Moiz
,
A. A.
,
Som
,
S.
,
Fogla
,
N.
,
Bybee
,
M.
,
Wahiduzzaman
,
S.
,
Mirzaeian
,
M.
,
Millo
,
F.
, and
Kodavasal
,
J.
,
2017
, “
Examining the Role of Flame Topologies and In-Cylinder Flow Fields on Cyclic Variability in Spark-Ignited Engines Using Large-Eddy Simulation
,”
Int. J. Eng. Res.
,
19
(
8
), pp.
886
904
.
21.
Ameen
,
M. M.
,
Mizaeian
,
M.
,
Millo
,
F.
, and
Som
,
S.
,
2018
, “
Numerical Prediction of Cyclic Variability in a Spark Ignition Engine Using a Parallel Large Eddy Simulation Approach
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052203
.
22.
Kodavasal
,
J.
,
Moiz
,
A. A.
,
Ameen
,
M.
, and
Som
,
S.
,
2018
, “
Using Machine Learning to Analyze Factors Determining Cycle-to-Cycle Variation in a Spark-Ignited Gasoline Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102204
.
23.
Richards
,
K.
,
Probst
,
D.
,
Pomraning
,
E.
,
Senecal
,
P. K.
, and
Scarcelli
,
R.
, “
The Observation of Cyclic Variation in Engine Simulations When Using RANS Turbulence Modeling
,”
ASME Internal Combustion Engine Division Fall Technical Conference
,
Columbus, IN
,
Oct. 19–22, 2014
, p.
V002T06A010
.
24.
Scarcelli
,
R.
,
Richards
,
K.
,
Pomraning
,
E.
,
Senecal
,
P.
,
Wallner
,
T.
, and
Sevik
,
J.
,
2016
, “
Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations
,”
SAE
Paper No. 2016-01-0593.
25.
Battistoni
,
M.
,
Grimaldi
,
C.
,
Cruccolini
,
V.
,
Discepoli
,
G., and
De Cesare
,
M.
,
2017
, “
Assessment of Port Water Injection Strategies to Control Knock in a GDI Engine Through Multi-Cycle CFD Simulations
,”
SAE
Paper No. 2017-24-0034.
26.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
27.
Amsden
,
A.A.
,
1997
, “
KIVA-3V: A Block Structured KIVA Program for Engines With Vertical or Canted Valves
,”
Los Alamos National Laboratory
,
Technical
Report No. LA-13313-MS.
28.
Leguille
,
M.
,
Ravet
,
F.
,
Le Moine
,
J.
,
Pomraning
,
E.
,
Richards
,
K.
, and
Senecal
,
P. K.
,
2017
, “
Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine
,”
SAE
Paper No. 2017-01-0669.
29.
Reitz
,
R. D.
,
1987
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomization Spray Technol.
,
3
, pp.
309
337
.
30.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Spray
,
9
(
6
), pp.
623
650
.
31.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.
32.
Peters
,
N.
,
1986
, “
Laminar Flamelet Concepts in Turbulent Combustion
,”
Symp. (Int.) Combust.
,
21
(
1
), pp.
1231
1250
.
33.
Tan
,
Z.
, and
Reitz
,
R. D.
,
2003
, “
Modeling Ignition and Combustion in Spark-Ignition Engines Using a Level Set Method
,”
SAE
Paper No. 2003-01-0722.
34.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
35.
Wang
,
H.
,
Yao
,
M.
,
Yue
,
Z.
,
Jia
,
M.
, and
Reitz
,
R. D.
,
2015
, “
A Reduced Toluene Reference Fuel Chemical Kinetic Mechanism for Combustion and Polycyclic-Aromatic Hydrocarbon Predictions
,”
Combust. Flame
,
162
(
6
), pp.
2390
2404
.
36.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Mixtures of Air and Methanol, Isooctane and Indolene at High Pressures and Temperatures
,”
Combust. Flame
,
48
, pp.
191
210
.
37.
Gulder
,
O.L.
,
1984
, “
Correlations of Laminar Combustion Data for Alternative S.I. Engine Fuels
,”
SAE
Paper No. 841000.
38.
Babajimopoulos
,
A.
,
Assanis
,
D. N.
,
Flowers
,
D. L.
,
Aceves
,
S. M.
, and
Hessel
,
R. P.
,
2005
, “
A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model With Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
6
(
5
), pp.
497
512
.
39.
Dahms
,
R. N.
,
Drake
,
M. C.
,
Fansler
,
T. D.
,
Kuo
,
T.-W.
, and
Peters
,
N.
,
2011
, “
Understanding Ignition Processes in Spray-Guided Gasoline Engines Using High-Speed Imaging and the Extended Spark-Ignition Model SparkCIMM. Part A: Spark Channel Processes and the Turbulent Flame Front Propagation
,”
Combust. Flame
,
158
(
11
), pp.
2229
2244
.
40.
Colin
,
O.
, and
Truffin
,
K.
,
2011
, “
A Spark Ignition Model for Large Eddy Simulation Based on an FSD Transport Equation (ISSIM-LES)
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3097
3104
.
41.
Gubba
,
S. R.
,
Jupudi
,
R. S.
,
Pasunurthi
,
S. S.
,
Wijeyakulasuriya
,
S. D.
,
Primus
,
R. J.
,
Klingbeil
,
A.
, and
Finney
,
C. E. A.
,
2018
, “
Capturing Pressure Oscillations in Numerical Simulations of Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082205
.
You do not currently have access to this content.