Simulations of natural gas pipeline transients provide an insight into a pipeline capacity to deliver gas to consumers or to accumulate gas from source wells during various abnormal conditions and under variable consumption rates. This information is used for the control of gas pressure and for planning repairs in a timely manner. Therefore, a numerical model and a computer code have been developed for the simulation of natural gas transients in pipelines. The developed approach is validated by simulations of test cases from the open literature. Detailed analyses of both slow and fast gas flow transients are presented. Afterward, the code is applied to the simulation of transients in a long natural gas transmission pipeline. The simulated scenarios cover common operating conditions and abrupt disturbances. The simulations of the abnormal conditions show a significant accumulation capacity and inertia of the gas within the pipeline, which enables gas packing and consumers supply during the day time period. Since the numerical results are obtained under isothermal gas transient conditions, an analytical method for the evaluation of the difference between isothermal and nonisothermal predictions is derived. It is concluded that the nonisothermal transient effects can be neglected in engineering predictions of natural gas packing in long pipelines during several hours. The prescribed isothermal temperature should be a few degrees higher than the soil temperature due to the heat generation by friction on the pipelines wall and heat transfer from the gas to the surrounding soil.

References

References
1.
International Energy Agency
,
Key World Energy Statistics
, Paris, https://webstore.iea.org/key-world-energy-statistics-2018. Accessed Nov. 27, 2018.
2.
Ma
,
S.
,
Zhou
,
D.
,
Zhang
,
H.
,
Weng
,
S.
, and
Shao
,
T.
,
2018
, “
Modeling and Operational Optimization Based on Energy Hubs for Complex Energy Networks With Distributed Energy Resources
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022002
.
3.
Angerer
,
M.
,
Djukow
,
M.
,
Riedl
,
K.
,
Gleis
,
S.
, and
Spliethoff
,
H.
,
2018
, “
Simulation of Cogeneration-Combined Cycle Plant Flexibilization by Thermochemical Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020909
.
4.
Teng
,
B.
,
Cheng
,
L.
,
Huang
,
S.
, and
Li
,
H. A.
,
2018
, “
Production Forecasting for Shale Gas Reservoirs With Fast Marching-Succession of Steady States Method
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032913
.
5.
Wei
,
N.
,
Li
,
C.
,
Li
,
C.
,
Xie
,
H.
,
Du
,
Z.
,
Zhang
,
Q.
, and
Zeng
,
F.
,
2018
, “
Short-Term Forecasting of Natural Gas Consumption Using Factor Selection Algorithm and Optimized Support Vector Regression
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032701
.
6.
Mohitpour
,
M.
,
Thompson
,
W.
, and
Asante
,
B.
,
1996
, “
The Importance of Dynamic Simulation on the Design and Optimization of Pipeline Transmission Systems
,”
Proceedings of the 1st International Pipeline Conference
,
Calgary, Alberta, Canada
,
June 9–13
, pp.
1183
1188
.
7.
Stevanovic
,
V.
,
2008
, “
Security of Gas Pipelines
,”
Proceedings of the NATO Advanced Research Workshop on Security and Reliability of Damaged Structures and Defective Materials. G. Pluvinage, and A. Sedmak, eds.
,
Portoroz, Slovenia
,
Oct. 19–22
.
8.
Zuo
,
L.
,
Jiang
,
F.
,
Jin
,
B.
,
Zhang
,
L.
, and
Xue
,
T.
,
2015
, “
Value Settings for the Rate of Pressure Drop of Automatic Line-Break Control Valves in Natural gas Pipelines
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
803
809
.
9.
Zhang
,
X.
,
Wu
,
C.
, and
Zuo
,
L.
,
2016
, “
Minimizing Fuel Consumption of a Gas Pipeline in Transient States by Dynamic Programming
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
193
203
.
10.
Khanmirza
,
E.
,
Madoliat
,
R.
, and
Pourfard
,
A.
,
2018
, “
Transient Optimization of Natural Gas Networks Using Intelligent Algorithms
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032901
.
11.
Issa
,
R. I.
, and
Spalding
,
D. B.
,
1972
, “
Unsteady One-Dimensional Compressible Frictional Flow With Heat Transfer
,”
J. Mech. Eng. Sci.
,
14
(
6
), pp.
365
369
.
12.
Thorley
,
A. R. T.
, and
Tiley
,
C. H.
,
1987
, “
Unsteady and Transient Flow of Compressible Fluids in Pipelines—A Review of Theoretical and Some Experimental Studies
,”
Int. J. Heat Fluid Flow
,
8
(
1
), pp.
3
15
.
13.
Price
,
G. R.
,
McBrien
,
R. K.
,
Rizopoulos
,
S. N.
, and
Golshan
,
H.
,
1999
, “
Evaluating the Effective Friction Factor and Overall Heat Transfer Coefficient During Unsteady Pipeline Operation
,”
ASME J. Offshore Mech. Arct. Eng.
,
121
(
2
), pp.
131
136
.
14.
Osiadacz
,
A. J.
,
1996
, “
Different Transient Models—Limitations, Advantages and Disadvantages
,”
Proceedings of the Pipeline Simulation Interest Group, PSIG Annual Meeting
,
San Francisco, CA
,
Oct. 23–25
, pp.
1
25
.
15.
Osiadacz
,
A. J.
, and
Chaczykowski
,
M.
,
2001
, “
Comparison of Isothermal and Non-Isothermal Pipeline Gas Flow Models
,”
Chem. Eng. J.
81
(
1-3
), pp.
41
51
.
16.
Abbaspour
,
M.
, and
Chapman
,
K. S.
,
2008
, “
Non-Isothermal Transient Flow in Natural Gas Pipeline
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
031018
.
17.
Chaczykowski
,
M.
,
2010
, “
Transient Flow in Natural Gas Pipeline—The Effect of Pipeline Thermal Model
,”
Appl. Math. Model.
,
34
(
4
), pp.
1051
1067
.
18.
Helgaker
,
F. J.
,
Oosterkamp
,
A.
,
Langelandsvik
,
L. I.
, and
Ytrehus
,
T.
,
2014
, “
Validation of 1D Flow Model for High Pressure Offshore Natural gas Pipelines
,”
J. Nat. Gas Sci. Eng.
,
16
, pp.
44
56
.
19.
Pambour
,
K. A.
,
Bolado-Lavin
,
R.
, and
Dijkema
,
G. P. J.
,
2016
, “
An Integrated Transient Model for Simulating the Operation of Natural Gas Transport Systems
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
672
690
.
20.
Wylie
,
E. B.
,
Streeter
,
V. L.
, and
Stoner
,
M. A.
,
1974
, “
Unsteady-State Natural-Gas Calculations in Complex Pipe Systems
,”
Soc. Petrol. Eng. J.
,
14
(
1
), pp.
35
43
.
21.
Wulff
,
W.
,
1987
, “
Computational Methods for Multiphase Flow
,”
Proceedings of the Second International Workshop on Two-Phase Flow Fundamentals
.
R.T.
Lahey
ed.,
New York
,
March 16–20
, pp.
1
138
.
22.
Alghlam
,
A. S.
,
2012
, “
Numerical Scheme for Modeling Natural Gas Flow in Cross-Border Pipelines
,” M.E. thesis,
University of Technology
,
Johor, Malaysia
.
23.
White
,
F. M.
,
1999
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
24.
Reddy
,
H. P.
,
Narasimhan
,
S.
, and
Bhallamudi
,
S. M.
,
2006
, “
Simulation and State Estimation of Transient Flow in Gas Pipeline Networks Using a Transfer Function Model
,”
Ind. Eng. Chem. Res.
,
45
(
11
), pp.
3853
3863
.
25.
Alamian
,
R.
,
Behbahani-Nejad
,
M.
, and
Ghanbarzadeh
,
A.
,
2012
, “
A State Space Model for Transient Flow Simulation in Natural Gas Pipelines
,”
J. Nat. Gas Sci. Eng.
,
9
, pp.
51
59
.
26.
Taylor
,
T. D.
, and
Wood
,
N. E.
,
1962
, “
A Computer Simulation of Gas Flow in Long Pipelines
,”
Soc. Petrol. Eng.
,
107
, pp.
297
302
.
27.
Zhou
,
J.
, and
Adewumi
,
M. A.
,
1996
, “
Simulation of Transient Flow in Natural Gas Pipelines
,”
Pennsylvania State University, Petroleum and Natural Gas Engineering
, Report No. GRIPA 16802.
28.
Tentis
,
E.
,
Margaris
,
D.
, and
Papanikas
,
D.
,
2003
, “
Transient Gas Flow Simulation Using an Adaptive Method of Lines
,”
C. R. Mecanique
,
331
(
7
), pp.
481
487
.
29.
Behbahani-Nejad
,
M.
, and
Bagheri
,
A.
,
2008
, “
A matlab Simulink Library for Transient Flow Simulation of Gas Networks, World Academy of Science
,”
Eng. Technol.
2
(
7
), pp.
139
145
.
30.
Osiadacz
,
A. J.
,
1987
,
Simulation and Analysis of Gas Networks
,
Gulf Publishing Company
,
Houston
.
31.
Ke
,
S. L.
, and
Ti
,
H. C.
,
2000
, “
Transient Analysis of Isothermal Gas Flow in Pipeline Network
,”
Chem. Eng. J.
,
76
(
2
), pp.
169
177
.
32.
Behbahani-Nejad
,
M.
, and
Shekari
,
Y.
,
2010
, “
The Accuracy and Efficiency of a Reduced-Order Model for Transient Flow Analysis in Gas Pipelines
,”
J. Petrol. Sci. Eng.
,
73
(
1–2
), pp.
13
19
.
33.
Dempsey
,
R. J.
,
Rachford
,
H. H.
, and
Nolen
,
J. S.
,
1972
, “
Gas Supply Analysis-States of the Arts
,”
Proceedings of the AGA Conference
,
San Francisco, CA
,
May 22–26
.
34.
Campbell
,
J. M.
,
2001
,
Gas Conditioning and Processing Vol. 1: The Basic Principles
,
8th ed
.,
Campbell Petroleum Series
,
Norman, Oklahoma
.
35.
Rohsenow
,
W. M.
, and
Hartnett
,
J. P.
,
1973
,
Handbook of Heat Transfer
,
McGraw-Hill Book
,
New York
.
36.
Badache
,
M.
,
Eslami-Nejad
,
P.
,
Ouzzane
,
M.
,
Aidoun
,
Z.
, and
Lamarche
,
L.
,
2016
, “
A New Modeling Approach for Improved Ground Temperature Profile Determination
,”
Renew. Energy
,
85
, pp.
436
444
.
37.
Jia
,
W.
,
Li
,
C.
, and
Wu
,
X.
,
2014
, “
Internal Surface Absolute Roughness for Large-Diameter Natural Gas Transmission Pipelines
,”
Oil Gas Eur. Mag.
,
40
(
4
), pp.
211
213
.
You do not currently have access to this content.