This study presents a train of thought and method for flue gas energy utilization management by connecting an optimized supercritical carbon dioxide (S-CO2) Brayton cycle with a selected steam/water Rankine cycle to recover the turbine exhaust gas heat with promising flue gas coupling capacity. Better performance over the currently used steam/water bottoming cycle is expected to be obtained by the combined bottoming cycle after the S-CO2 cycle is coupled with the high-temperature flue gas. The performances of several S-CO2 cycles are compared, and the selected steam/water cycle is maintained with constant flue gas inlet temperature to properly utilize the low-temperature flue gas. Aspen Plus is used for simulating the cycle performances and the flue gas heat duty. Results show that the recompression S-CO2 cycle with the reheating process is most recommended to be used in the combined bottoming cycle within the research scope. The suggested combined bottoming cycle may outperform most of the triple reheat steam/water cycles for the turbine exhaust temperature in the range of 602–640 °C. Subsequently, it is found that the intercooling process is not suggested if another heat recovery cycle is connected. Moreover, the specific work of the suggested S-CO2 cycles is calculated, and the bottoming cycle with the preheating cycle with the reheating process is found to be more compact than any other combined bottoming cycles.

References

References
1.
Zhang
,
G.
,
Zheng
,
J.
,
Yang
,
Y.
, and
Liu
W.
,
2016
, “
Thermodynamic Performance Simulation and Concise Formulas for Triple-Pressure Reheat HRSG of Gas–Steam Combined Cycle Under Off-Design Condition
,”
Energy Convers. Manage.
,
122
, pp.
372
385
.
2.
Rahman
,
A. A.
, and
Mokheimer
,
E. M. A.
,
2018
, “
Comparative Analysis of Different Inlet Air Cooling Technologies Including Solar Energy to Boost Gas Turbine Combined Cycles in Hot Regions
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112006
.
3.
Franco
,
A.
, and
Russo
,
A.
,
2002
, “
Combined Cycle Plant Efficiency Increase Based on the Optimization of the Heat Recovery Steam Generator Operating Parameters
,”
Int. J. Therm. Sci.
,
41
(
9
), pp.
843
859
.
4.
Ganapathy
,
V.
,
2003
,
Industrial Boilers and Heat Recovery Steam Generators
,
1st Ed.
,
CRC Press
,
Boca Raton, FL
, pp.
1
646
.
5.
Casarosa
,
C.
,
Donatini
,
F.
, and
Franco
,
A.
,
2004
, “
Thermoeconomic Optimization of Heat Recovery Steam Generators Operating Parameters for Combined Plants
,”
Energy
,
29
(
3
), pp.
389
414
.
6.
Kaviri
,
A. G.
,
Jaafar
,
M. N. M.
,
Lazim
,
T. M.
, and
Barzegaravval
,
H.
,
2013
, “
Exergoenvironmental Optimization of Heat Recovery Steam Generators in Combined Cycle Power Plant Through Energy and Exergy Analysis
,”
Energy Convers. Manage.
,
67
, pp.
27
33
.
7.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.
8.
Jahar
,
S.
,
2015
, “
Review and Future Trends of Supercritical CO2 Rankine Cycle for Low-Grade Heat Conversion
,”
Renew. Sustain. Energy Rev.
,
48
, pp.
434
451
.
9.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
,
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
.
10.
Vesely
,
L.
,
Manikantachari
,
K. R. V.
,
Vasu
,
S.
,
Kapat
,
J.
,
Dostal
,
V.
,
Martin
,
S.
,
2019
, “
Effect of Impurities on Compressor and Cooler in Supercritical CO2 Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012003
.
11.
Wang
,
X.
, and
Dai
,
Y.
,
2016
, “
Exergoeconomic Analysis of Utilizing the Transcritical CO2 Cycle and the ORC for a Recompression Supercritical CO2 Cycle Waste Heat Recovery: A Comparative Study
,”
Appl. Energy
,
170
, pp.
193
207
.
12.
Kim
,
M. S.
,
Ahn
,
Y.
,
Kim
,
B.
, and
Lee
,
J. I.
,
2016
, “
Study on the Supercritical CO2 Power Cycles for Landfill Gas Firing Gas Turbine Bottoming Cycle
,”
Energy
,
111
, pp.
893
909
.
13.
Wang
,
X.
,
Wu
,
Y.
,
Wang
,
J.
,
Dai
,
Y.
, and
Xie
,
D.
,
2015
, “
Thermo-Economic Analysis of a Recompression Supercritical CO2 Cycle Combined With a Transcritical CO2 Cycle
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montréal, Quebec, Canada
,
June 15–19, 2015
.
14.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2009
, “
Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
239
(
7
), pp.
1362
1371
.
15.
Padilla
,
R. V.
,
Soo Too
,
Y. C.
,
Benito
,
R.
, and
Stein
,
W.
,
2015
, “
Exergetic Analysis of Supercritical CO2 Brayton Cycles Integrated With Solar Central Receivers
,”
Appl. Energy
,
148
, pp.
348
365
.
16.
Bai
,
Z.
,
Zhang
,
G.
,
Li
,
Y.
,
Xu
,
G.
, and
Yang
,
Y.
,
2018
, “
A Supercritical CO2 Brayton Cycle With a Bleeding Anabranch Used in Coal-Fired Power Plants
,”
Energy
,
142
, pp.
731
738
.
17.
Xu
,
C.
,
Zhang
,
Q.
,
Yang
,
Z.
,
Li
,
X.
,
Xu
,
G.
, and
Yang
,
Y.
,
2018
, “
An Improved Supercritical Coal-Fired Power Generation System Incorporating a Supplementary Supercritical CO2 Cycle
,”
Appl. Energy
,
231
, pp.
1319
1329
.
18.
Sun
,
E.
,
Xu
,
J.
,
Li
,
M.
,
Liu
,
G.
, and
Zhu
,
B.
,
2018
, “
Connected-Top-Bottom-Cycle to Cascade Utilize Flue Gas Heat for Supercritical Carbon Dioxide Coal Fired Power Plant
,”
Energy Convers. Manage.
,
172
, pp.
138
154
.
19.
Singh
,
R.
,
Miller
,
S. A.
,
Rowlands
,
A. S.
, and
Jacobs
P. A.
,
2013
, “
Dynamic Characteristics of a Direct-Heated Supercritical Carbon-Dioxide Brayton Cycle in a Solar Thermal Power Plant
,”
Energy
,
50
, pp.
194
204
.
20.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation Nuclear Reactors
,”
Nucl. Technol.
,
154
(
3
), pp.
265
282
.
21.
Turchi
,
C. S.
,
Ma
,
Z.
, and
Dyreby
,
J.
,
2012
, “
Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15, 2012
, pp.
967
973
.
22.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
23.
Vesely
,
L.
,
Manikantachari
,
K. R. V.
,
Vasu
,
S.
,
Kapat
,
J.
,
Dostal
,
V.
, and
Martin
,
S.
,
2018
, “
Effect of Mixtures on Compressor and Cooler in Supercritical Carbon Dioxide Cycles
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15, 2018
, pp.
1
10
.
24.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2014
, “
Cycle Layout Studies of S-CO2 Cycle for the Next Generation Nuclear System Application
,”
The Korean Nuclear Society Autumn Meeting
,
Pyeongchang, Korea
,
Oct. 30–31, 2014
.
25.
Saeed
,
M.
, and
Kim
,
M.-H.
,
2018
, “
Analysis of a Recompression Supercritical Carbon Dioxide Power Cycle With an Integrated Turbine Design/Optimization Algorithm
,”
Energy
,
165
, pp.
93
111
.
26.
Le Moullec
,
Y.
,
2013
, “
Conceptual Study of a High Efficiency Coal-Fired Power Plant with CO2 Capture Using a Supercritical CO2 Brayton Cycle
,”
Energy
,
49
, pp.
32
46
.
27.
Conboy
,
T.
,
Wright
,
S.
,
Pasch
,
J.
,
Fleming
,
D.
,
Rochau
,
G.
, and
Fuller
,
R.
,
2012
, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15, 2012
, pp.
941
952
.
28.
Maxence
,
D. M.
,
Giuseppe
,
B.
,
Gabriel
,
H.
,
Norman
,
H.
,
Tassou
,
S. A.
, and
Arthur
,
L.
,
2018
, “
Design of a Single-Shaft Compressor, Generator, Turbine for Small-Scale Supercritical CO2 Systems for Waste Heat to Power Conversion Applications
,”
2nd European supercritical CO2 Conference
,
Essen, Germany
,
Aug. 30–31, 2018
, pp.
1
8
.
29.
Yu
,
G.
,
Metghalchi
,
H.
,
Askari
,
O.
, and
Wang
,
Z.
,
2019
, “
Combustion Simulation of Propane/Oxygen (With Nitrogen/Argon) Mixtures Using Rate-Controlled Constrained-Equilibrium
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022204
.
30.
Yu
,
G.
,
Hadi
,
F.
, and
Metghalchi
,
H.
,
2019
, “
Rate-Controlled Constrained-Equilibrium Application in Shock Tube Ignition Delay Time Simulation
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
020801
.
31.
Yu
,
G.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2018
, “
Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012204
.
32.
Bai
,
Z.
,
Wang
,
Z.
,
Yu
,
G.
,
Yang
,
Y.
, and
Metghalchi
,
H.
,
2019
, “
Experimental Study of Laminar Burning Speed for Premixed Biomass/air Flame
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022206
.
33.
Wang
,
Z.
,
Bai
,
Z.
,
Yelishala
,
S. C.
,
Yu
,
G.
, and
Metghalchi
,
H.
,
2018
, “
Effects of Diluent on Laminar Burning Speed and Flame Structure of Gas to Liquid Fuel Air Mixtures at High Temperatures and Moderate Pressures
,”
Fuel
,
231
, pp.
204
214
.
34.
Askari
,
O.
,
Vien
,
K.
,
Wang
,
Z.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/Air Flames at High Pressures and Temperatures
,”
Appl. Energy
,
179
, pp.
451
462
.
35.
Wang
,
Z.
,
Alswat
,
M.
,
Yu
,
G.
,
Allehaibi
,
M. O.
, and
Metghalchi
,
H.
,
2017
, “
Flame Structure and Laminar Burning Speed of Gas to Liquid Fuel Air Mixtures at Moderate Pressures and High Temperatures
,”
Fuel
,
209
, pp.
529
537
.
36.
Askari
,
O.
,
Wang
,
Z.
,
Vien
,
K.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2017
, “
On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame
,”
Fuel
,
190
, pp.
90
103
.
37.
Yu
,
G.
,
Zhang
,
Y.
,
Wang
,
Z.
,
Bai
,
Z.
, and
Metghalchi
,
H.
,
2019
, “
The Rate-Controlled Constrained-Equilibrium Combustion Modeling of n-Butane/Oxygen/Diluent Mixtures
,”
Fuel
,
239
, pp.
786
793
.
38.
Hada
,
S.
,
Yuri
,
M.
,
Masada
,
J.
,
Ito
,
E.
, and
Tsukagoshi
,
K.
,
2012
, “
Evolution and Future Trend of Large Frame Gas Turbines: A New 1600 Degree C, J Class Gas Turbine
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15, 2012
, pp.
599
606
.
39.
Matta
,
R. K.
,
Mercer
,
G. D.
, and
Tuthill
,
R. S.
,
2000
,
Power Systems for the 21st Century- “H” Gas Turbine Combined-Cycles
,
GE Power Systems Schenectady
,
New York
.
40.
Wright
,
S. A.
,
Conboy
,
T. M.
, and
Rochau
,
G. E.
,
2011
,
Supercritical CO2 Power Cycle Development Summary at Sandia National Laboratories
,
Sandia National Lab.(SNL-NM)
,
Albuquerque, NM
.
41.
Kimzey
,
G.
,
2012
,
Development of a Brayton Bottoming Cycle Using Supercritical Carbon Dioxide as the Working Fluid
,
Electric Power Research Institute, University Turbine Systems Research Program, Gas Turbine Industrial Fellowship
,
Palo Alto, CA
.
42.
Heo
,
J. Y.
,
Ahn
,
Y.
, and
Lee
,
J. I.
,
2016
, “
A Study of S-CO2 Power Cycle for Waste Heat Recovery Using Isothermal Compressor
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17, 2016
, pp.
1
9
.
43.
Cho
,
S. K.
,
Kim
,
M.
,
Baik
,
S.
,
Ahn
,
Y.
, and
Lee
,
J. I.
,
2015
, “
Investigation of the Bottoming Cycle for High Efficiency Combined Cycle Gas Turbine System With Supercritical Carbon Dioxide Power Cycle
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec, Canada
,
June 15–19, 2015
, pp.
1
12
.
44.
Kim
,
Y. M.
,
Sohn
,
J. L.
, and
Yoon
,
E. S.
,
2017
, “
Supercritical CO2 Rankine Cycles for Waste Heat Recovery From Gas Turbine
,”
Energy
,
118
, pp.
893
905
.
45.
Valdés
,
M.
,
Dolores Durán
,
M.
, and
Rovira
,
A.
,
2003
, “
Thermoeconomic Optimization of Combined Cycle Gas Turbine Power Plants Using Genetic Algorithms
,”
Appl. Therm. Eng.
,
23
(
17
), pp.
2169
2182
.
46.
Nami
,
H.
,
Mahmoudi
,
S. M. S.
, and
Nemati
,
A.
,
2017
, “
Exergy, Economic and Environmental Impact Assessment and Optimization of a Novel Cogeneration System Including a gas Turbine, a Supercritical CO2 and an Organic Rankine Cycle (GT-HRSG/SCO2)
,”
Appl. Therm. Eng.
,
110
, pp.
1315
1330
.
47.
Hou
,
S.
,
Zhou
,
Y.
,
Yu
,
L.
,
Zhang
,
F.
,
Cao
,
S.
, and
Wu
,
Y.
,
2018
, “
Optimization of a Novel Cogeneration System Including a Gas Turbine, a Supercritical CO2 Recompression Cycle, a Steam Power Cycle and an Organic Rankine Cycle
,”
Energy Convers. Manage.
,
172
, pp.
457
471
.
48.
Jiao
,
S.
,
Sun
,
S.
, and
Zhang
,
Y.
,
2007
,
Gas Turbine and Gas-Steam Combined Cycle System
,
1st ed.
,
China Electric Power Press
,
Beijing
, pp.
41
191
(in Chinese).
49.
Zhang
,
G.
,
Zheng
,
J.
,
Xie
,
A.
,
Yang
,
Y.
, and
Liu
,
W.
,
2016
, “
Thermodynamic Analysis of Combined Cycle Under Design/Off-Design Conditions for Its Efficient Design and Operation
,”
Energy Convers. Manage.
,
126
, pp.
76
88
.
50.
Dechamps
,
P. J.
,
1996
, “
Advanced Combined Cycle Alternatives With the Latest Gas Turbines
,”
ASME 1996 Turbo Asia Conference
,
Jakarta, Indonesia
,
Nov. 5–7, 1996
, pp.
1
10
.
51.
Adumene
,
S.
, and
Lebele-Alawa
,
B. T.
,
2015
, “
Performance Optimization of Dual Pressure Heat Recovery Steam Generator (HRSG) in the Tropical Rainforest
,”
Engineering
,
7
(
6
), pp.
347
364
.
52.
Lin
,
G.
,
2004
, “
The Informations of the Gas Turbine GT26 From ALSTOM Company
,” ,
6
(
3
), pp.
350
364
.
53.
Rovira
,
A.
,
Sanchez
,
C.
,
Munoz
,
M.
,
Valdés
,
M.
, and
Durán
,
M. D.
,
2011
, “
Thermoeconomic Optimisation of Heat Recovery Steam Generators of Combined Cycle Gas Turbine Power Plants Considering Off-Design Operation
,”
Energy Convers. Manage.
,
52
(
4
), pp.
1840
1849
.
54.
Yuri
,
M.
,
Masada
,
J.
,
Tsukagoshi
,
K.
,
Ito
,
E.
, and
Hada
,
S.
,
2013
, “
Development of 1600 C-Class High-Efficiency Gas Turbine for Power Generation Applying J-Type Technology
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
50
(
3
), pp.
1
10
.
55.
Uusitalo
,
A.
,
Ameli
,
A.
, and
Turunen-Saaresti
,
T.
,
2019
, “
Thermodynamic and Turbomachinery Design Analysis of Supercritical Brayton Cycles for Exhaust Gas Heat Recovery
,”
Energy
,
167
, pp.
60
79
.
56.
Hejzlar
,
P.
,
Dostal
,
V.
,
Driscoll
,
M. J.
,
Dumaz
,
P.
,
Poullennec
,
G.
, and
Alpy
,
N.
,
2006
, “
Assessment of Gas Cooled Fast Reactor With Indirect Supercritical CO2 Cycle
,” ,
38
(
2
), pp.
109
118
.
57.
Giampaolo
,
T.
,
2002
,
Gas Turbine Handbook: Principles and Practice
,
2nd ed.
,
Fairmont Press
,
New York
.
58.
Vaclav
,
D.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles
,”
Nucl. Technol.
,
154
(
3
), pp.
283
301
.
You do not currently have access to this content.