Various low-NOx combustion technologies have been widely applied as primary measures to limit NOx emission in coal-fired boilers. However, this leads to the formation of high concentrations of H2S in the fuel-rich zone and thus causes high-temperature corrosion of the water-wall. In order to suppress the formation of H2S near the water-wall, it is necessary to have adequate knowledge of the reaction mechanisms of sulfur species during coal combustion. Therefore, this work systematically reviews the current state-of-the-art concerning reaction mechanisms for sulfur species, including global mechanisms, detailed mechanisms, and reduced mechanisms. Additionally, two operation techniques, namely, near-wall air and multi-hole-wall air, are introduced to avoid high-temperature corrosion caused by H2S. Finally, some new research directions are recommended to further reveal the reaction mechanisms of sulfur species and to test the feasibility of multi-hole-wall air on preventing high-temperature corrosion.

References

References
1.
Li
,
S.
,
Xu
,
T.
,
Hui
,
S.
,
Zhou
,
Q.
, and
Tan
,
H.
,
2009
, “
Optimization of Air Staged in a 1 MW Tangentially Fired Pulverized Coal Furnace
,”
Fuel Process. Technol.
,
90
(
1
), pp.
99
106
.
2.
Nabagło
,
D.
,
Kurek
,
T.
, and
Wojdan
,
K.
,
2018
, “
Combustion Process Analysis and Diagnostic Using Optical Flame Scanners in Front-Fired Pulverized Coal Boiler
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072003
.
3.
Ruth
,
L. A.
,
2001
, “
Advanced Coal-Fired Power Plants
,”
ASME J. Energy Resour. Technol.
,
123
(
4
), pp.
4
9
.
4.
Chen
,
Z.
,
Li
,
Z.
,
Zhu
,
Q.
, and
Jing
,
J.
,
2011
, “
Gas/Particle Flow and Combustion Characteristics and NOx Emission of a New Swirl Coal Burner
,”
Energy
,
36
(
2
), pp.
709
723
.
5.
Habermehl
,
M.
,
Hees
,
J.
,
Maβmeyer
,
A.
,
Zabrodiec
,
D.
,
Hatzfeld
,
O.
, and
Kneer
,
R.
,
2016
, “
Comparison of Flame Stability Under Air and Oxy-Fuel Conditions for an Aerodynamically Stabilized Pulverized Coal Swirl Flame
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042209
.
6.
Ribeirete
,
A.
, and
Costa
,
M.
,
2009
, “
Detailed Measurement in a Pulverized-Coal-Fired Large-Scale Laboratory Furnace With Air Staged
,”
Fuel
,
88
(
1
), pp.
40
45
.
7.
Wang
,
J.
,
Fan
,
W.
,
Li
,
Y.
,
Xiao
,
M.
,
Wang
,
K.
, and
Ren
,
P.
,
2012
, “
The Effect of Air Staged Combustion on NOx Emissions in Dried Lignite Combustion
,”
Energy
,
37
(
1
), pp.
725
736
.
8.
Taniguchi
,
M.
,
Okazaki
,
H.
,
Kobayashi
,
H.
,
Azuhata
,
S.
,
Miyadera
,
H.
,
Muto
,
H.
, and
Tsumura
,
T.
,
2001
, “
Pyrolysis and Ignition Characteristics of Pulverized Coal Particles
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
32
38
.
9.
Bai
,
W.
,
Li
,
H.
,
Deng
,
L.
,
Liu
,
H.
, and
Che
,
D.
,
2014
, “
Air Staged Combustion Characteristics of Pulverized Coal Under High Temperature and Strong Reducing Atmosphere Conditions
,”
Energy Fuels
,
28
(
3
), pp.
1820
1828
.
10.
Pawlak-Kruczek
,
H. P.
,
Lewtak
,
R.
,
Plutechi
,
Z.
,
Baranowski
,
M.
,
Ostrycharczyk
,
M.
,
Krochmalny
,
K.
,
Czerep
,
M.
, and
Zgora
,
J.
,
2018
, “
The Impact of Predried Lignite Cofiring With Hard Coal in an Industrial Scale Pulverized Coal Fired Boiler
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062207
.
11.
Tola
,
V.
,
Cau
,
G.
,
Ferrara
,
F.
, and
Pettinau
,
A.
,
2016
, “
CO2 Emissions Reduction From Coal-Fired Power Generation: A Techno-Economic Comparison
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
061602
.
12.
Shim
,
H. S.
,
Valentine
,
J. R.
,
Davis
,
K.
,
Seo
,
S.
, and
Kim
,
T.
,
2008
, “
Development of Fireside Waterwall Corrosion Correlations Using Pilot-Scale Test Furnace
,”
Fuel
,
87
(
15–16
), pp.
3353
3361
.
13.
Zhang
,
B.
,
Ren
,
Z.
,
Shi
,
S.
,
Yan
,
S.
, and
Fang
,
F.
,
2016
, “
Numerical Analysis of Gasification and Emission Characteristics of a Two-Stage Entrained Flow Gasifier
,”
Chem. Eng. Sci.
,
152
, pp.
227
238
.
14.
Floriani
,
S. L.
,
Virmond
,
E.
,
Luiz
,
D. B.
,
Althoff
,
C. A.
,
José
,
H. J.
, and
Moreira
,
R. F. P. M.
,
2010
, “
Potential of Industrial Solid Wastes as Energy Sources and Gaseous Emissions Evaluation in a Pilot Scale Burner (ES2008-54355)
,”
ASME J. Energy Resour. Technol.
,
132
(
1
), p.
011003
.
15.
Baruah
,
B. P.
, and
Khare
,
P.
,
2007
, “
Pyrolysis of High Sulfur Indian Coals
,”
Energy Fuels
,
21
(
6
), pp.
3346
3352
.
16.
Miura
,
K.
,
Mae
,
K.
,
Shimada
,
M.
, and
Minami
,
H.
,
2001
, “
Analysis of Formation Rates of Sulfur-Containing Gases During the Pyrolysis of Various Coals
,”
Energy Fuels
,
15
(
3
), pp.
629
636
.
17.
Zhou
,
Q.
,
Hu
,
H.
,
Liu
,
Q.
,
Zhu
,
S.
, and
Zhao
,
R.
,
2005
, “
Effect of Atmosphere on Evolution of Sulfur-Containing Gases During Coal Pyrolysis
,”
Energy Fuels
,
19
(
3
), pp.
892
897
.
18.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2016
, “
Reduction of Sulfur Dioxide Emissions by Burning Coal Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032204
.
19.
Rokni
,
E.
,
Chi
,
H. S.
, and
Levendis
,
Y. A.
,
2017
, “
In-Furnace Sulfur Capture by Cofiring Coal With Alkali-Based Sorbents
,”
ASME J. Energy Resour. Technol.
,
139
(
7
), p.
042204
.
20.
Chen
,
L. G.
, and
Bhattacharya
,
S.
,
2013
, “
Sulfur Emission From Victorian Brown Coal Under Pyrolysis, Oxy-Fuel Combustion and Gasification Conditions
,”
Environ. Sci. Technol.
,
47
(
3
), pp.
1729
1734
.
21.
Wladyslaw
,
M.
,
2017
, “
Co-Combustion of Pulverized Coal and Biomass in Fluidized Bed of Furnace
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062204
.
22.
Chu
,
X.
,
Li
,
W.
, and
Li
,
B.
,
2008
, “
Sulfur Transfers From Pyrolysis and Gasification of Direct Liquefaction Residue of Shenhua Coal
,”
Fuel
,
87
(
2
), pp.
211
215
.
23.
Luo
,
Q.
,
Park
,
C. S.
,
Raju
,
A. S. K.
, and
Norbeck
,
J. M.
,
2014
, “
Experimental Study of Gaseous Sulfur Species Formation During the Steam Hydrogasification of Coal
,”
Energy Fuels
,
28
(
5
), pp.
3399
3402
.
24.
Li
,
Q.
,
Wang
,
Z.
,
Lin
,
Z.
,
He
,
Y.
,
Zhang
,
K.
,
Kumar
,
S.
, and
Cen
,
K.
,
2018
, “
Effects of Hydrothermal Modification on Sulfur Release of Low-Quality Coals During Thermal Transformation Process
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072201
.
25.
Bläsing
,
M.
,
Melchior
,
T.
,
Müller
,
M.
, and
Bhattacharya
,
S.
,
2011
, “
Influence of Temperature on the Release of Inorganic Species During High Temperature Gasification of Rhenish Lignite
,”
Fuel Process. Technol.
,
92
(
3
), pp.
511
516
.
26.
Gu
,
Y.
,
Yperman
,
J.
,
Reggers
,
G.
,
Carleer
,
R.
, and
Vandewijingaarden
,
J.
,
2016
, “
Characteristics of Volatile Organic Sulphur Compounds Release During Coal Pyrolysis in Inert, Hydrogen and CO2 Atmosphere
,”
Fuel
,
184
, pp.
304
313
.
27.
Anthony
,
E. J.
,
Ross
,
G. G.
,
Berry
,
E. E.
,
Hemings
,
R. T.
, and
Kissel
,
R. K.
,
1995
, “
Characterization of Solid Wastes From Circulating Fluidized Bed Combustion
,”
ASME J. Energy Resour. Technol.
,
17
(
1
), pp.
18
23
.
28.
Müller
,
M.
,
Schnell
,
U.
, and
Scheffknecht
,
G.
,
2013
, “
Modelling the Fate of Sulfur During Pulverized Coal Combustion Under Conventional and Oxy-Fuel Conditions
,”
Energy Procedia
,
37
, pp.
1377
1388
.
29.
Zhang
,
Z.
,
Li
,
Z.
, and
Cai
,
N.
,
2016
, “
Formation of Reductive and Corrosive Gases During Air-Staged Combustion of Blends of Anthracite/Sub-Bituminous Coals
,”
Energy Fuels
,
30
(
5
), pp.
4353
4362
.
30.
Monaghan
,
R. F. D.
, and
Ghoniem
,
A. F.
,
2012
, “
A Dynamic Reduced Order Model for Simulating Entrained Flow Gasifiers. Part I: Model Development and Description
,”
Fuel
,
91
(
1
), pp.
61
80
.
31.
Shirai
,
H.
,
Ikeda
,
M.
, and
Aramaki
,
H.
,
2013
, “
Characteristics of Hydrogen Sulfide Formation in Pulverized Coal Combustion
,”
Fuel
,
114
, pp.
114
119
.
32.
Tsuji
,
H.
,
Tanno
,
K.
,
Nakajima
,
A.
,
Yamamoto
,
A.
, and
Shirai
,
H.
,
2015
, “
Hydrogen Sulfide Characteristics of Pulverized Coal Combustion-Evaluation of Blended Combustion of Two Bituminous Coals
,”
Fuel
,
158
, pp.
523
529
.
33.
Duan
,
L.
,
Zhao
,
C.
,
Zhou
,
W.
,
Liang
,
C.
, and
Chen
,
X.
,
2009
, “
Sulfur Evolution From Coal Combustion in O2/CO2 Mixture
,”
J. Anal. Appl. Pyrol.
,
86
(
2
), pp.
269
273
.
34.
Frigge
,
L.
,
Elserafi
,
G.
,
Sröhle
,
J.
, and
Epple
,
B.
,
2016
, “
Sulfur and Chlorine Gas Species Formation During Coal Pyrolysis in Nitrogen and Carbon Dioxide Atmosphere
,”
Energy Fuels
,
30
(
9
), pp.
7713
7720
.
35.
Abián
,
M.
,
Cebrián
,
M.
,
Millera
,
Á.
,
Bilbao
,
R.
, and
Alzueta
,
M. U.
,
2015
, “
CS2 and COS Conversion Under Different Combustion Conditions
,”
Combust. Flame
,
162
(
5
), pp.
2119
2127
.
36.
Yang
,
Y.
,
Shi
,
Y.
, and
Cai
,
N.
,
2016
, “
Simultaneous Removal of COS and H2S From Hot Syngas by Rare Metal-Doped SnO2 Sorbents
,”
Fuel
,
181
, pp.
1020
1026
.
37.
El-Melih
,
A. M.
,
Shoaibi
,
A. A.
, and
Gupta
,
A. K.
,
2017
, “
Reformation of Hydrogen Sulfide to Hydrogen in the Presence of Xylene
,”
Appl. Energy
,
203
, pp.
403
411
.
38.
Gu
,
Y.
,
Yperman
,
J.
,
Vandewijingaarden
,
J.
,
Reggers
,
G.
, and
Carleer
,
R.
,
2017
, “
Organic and Inorganic Sulphur Compounds Releases From High-Pyrite Coal Pyrolysis in H2, N2 and CO2: Test Case Chinese LZ Coal
,”
Fuel
,
202
, pp.
494
502
.
39.
ANSYS, Inc.
,
2011
, “
ANSYS Fluent Theory Guide 14.0.
40.
Zhang
,
Z.
,
Chen
,
D.
,
Li
,
Z.
,
Cai
,
N.
, and
Imada
,
J.
,
2017
, “
Development of Sulfur Release and Reaction Model for Computational Fluid Dynamic Modeling in Sub-Bituminous Coal Combustion
,”
Energy Fuels
,
31
(
2
), pp.
1383
1398
.
41.
Ma
,
H.
,
Zhou
,
L.
,
Ma
,
S.
,
Wang
,
Z.
,
Cui
,
Z.
,
Zhang
,
W.
, and
Li
,
J.
,
2018
, “
Reaction Mechanism for Sulfur Species During Pulverized Coal Combustion
,”
Energy Fuels
,
32
(
3
), pp.
3958
3966
.
42.
Sröhle
,
J.
,
Chen
,
X.
,
Zorbach
,
I.
, and
Epple
,
B.
,
2014
, “
Validation of a Detailed Reaction Mechanism for Sulfur Species in Coal Combustion
,”
Combust. Sci. Technol.
,
186
(
4–5
), pp.
540
551
.
43.
Frigge
,
L.
,
Sröhle
,
J.
, and
Epple
,
B.
,
2017
, “
Release of Sulfur and Chlorine Gas Species During Coal Combustion and Pyrolysis in an Entrained Flow Reactor
,”
Fuel
,
201
, pp.
105
110
.
44.
Gargurevich
,
I. A.
,
2005
, “
Hydrogen Sulfide Combustion: Relevant Issues Under Claus Furnace Conditions
,”
Ind. Eng. Chem. Res.
,
44
(
20
), pp.
7706
7729
.
45.
Savel’ev
,
A. M.
,
Starik
,
A. M.
, and
Titova
,
N. S.
,
2002
, “
Formation Kinetics of Sulfur-Bearing Compounds in Combustion of Hydrocarbon Fuels in Air
,”
Combust. Explos. Shock Waves
,
38
(
6
), pp.
609
621
.
46.
Schofield
,
K.
,
2001
, “
The Kinetics Nature of Sulfur’s Chemistry in Flames
,”
Combust. Flame
,
124
(
1–2
), pp.
137
155
.
47.
Tsuchiya
,
K.
,
Kamiya
,
K.
, and
Matsui
,
H.
,
1997
, “
Studies on the Oxidation Mechanism of H2S Based on Direct Examination of the Key Reactions
,”
Int. J. Chem. Kinet.
,
29
(
1
), pp.
57
66
.
48.
Jassim
,
E.
,
Benson
,
S. A.
,
Bowman
,
F. M.
, and
Seames
,
W. S.
,
2011
, “
The Influence of Fragmentation on the Behavior of Pyrite Particles During Pulverized Coal Combustion
,”
Fuel Process. Technol.
,
92
(
5
), pp.
970
976
.
49.
Fernandez
,
M. J.
, and
Lyngfelt
,
A.
,
2001
, “
Concentration of Sulphur Compounds in the Combustion Chamber of a Circulating Fluidised-Bed Boiler
,”
Fuel
,
80
(
3
), pp.
321
326
.
50.
El-Melih
,
A. M.
,
Ibrahim
,
S.
,
Gupta
,
A. K.
, and
Shoaibi
,
A. A.
,
2016
, “
Experimental Examination of Syngas Recovery From Acid Gases
,”
Appl. Energy
,
164
, pp.
64
68
.
51.
Glarborg
,
P.
,
Kubel
,
D.
,
Dam-Johansen
,
K.
,
Chiang
,
H. M.
, and
Bozzelli
,
J. W.
,
1996
, “
Impact of SO2 and NO on CO Oxidation Under Post Flame Conditions
,”
Int. J. Chem. Kinet.
,
28
(
10
), pp.
773
790
.
52.
Liu
,
H.
,
Wang
,
C.
,
Zou
,
C.
,
Zhang
,
Y.
, and
Wang
,
J.
,
2017
, “
Simultaneous Volatilization Characteristics of Arsenic and Sulfur During Isothermal Coal Combustion
,”
Fuel
,
203
, pp.
152
161
.
53.
Tian
,
L.
,
Yang
,
W.
,
Chen
,
Z.
,
Wang
,
X.
,
Yang
,
H.
, and
Chen
,
H.
,
2016
, “
Sulfur Behavior During Coal Combustion in Oxy-Fuel Circulating Fluidized Bed Condition by Using TG-FTIR
,”
J. Energy Inst.
,
89
(
2
), pp.
264
270
.
54.
Lv
,
W.
,
Yu
,
D.
,
Wu
,
J.
,
Zhang
,
L.
, and
Xu
,
M.
,
2015
, “
The Chemical Role of CO2 in Pyrite Thermal Decomposition
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3637
3644
.
55.
Clark
,
P. D.
,
2001
, “
Mechanisms of CO and COS Formation in the Claus Furnace
,”
Ind. Eng. Chem. Res.
,
40
(
2
), pp.
497
508
.
56.
Chernysheva
,
A. V.
,
Basevich
,
V. Y.
,
Vedeneev
,
V. I.
, and
Arutyunov
,
V. S.
,
1992
, “
Mechanism of the Gas-Phase Oxidation of Carbon Disulfide at Elevated Temperatures (the C-S-O System)
,”
Russ. Chem. Bull.
,
41
(
4
), pp.
629
637
.
57.
Towler
,
G. P.
, and
Lynn
,
S.
,
1993
, “
Development of a Zero-Emissions Sulfur-Recovery Process. 1: Thermochemistry and Reaction Kinetics of Mixtures of H2S and CO2 at High Temperature
,”
Ind. Eng. Chem. Res.
,
32
(
11
), pp.
2800
2811
.
58.
Zhou
,
C.
,
Sendt
,
K.
, and
Haynes
,
B. S.
,
2013
, “
Experimental and Kinetics Modelling Study of H2S Oxidation
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
625
632
.
59.
Giménez-lópez
,
J.
,
Martínez
,
M.
,
Millera
,
A.
,
Bilbao
,
R.
, and
Alzueta
,
M. U.
,
2011
, “
SO2 Effects on CO Oxidation in a CO2 Atmosphere, Characteristics of Oxy-Fuel Conditions
,”
Combust. Flame
,
158
(
1
), pp.
48
56
.
60.
Selim
,
H.
,
Ibrahim
,
S.
,
Shoaibi
,
A. A.
, and
Gupta
,
A. K.
,
2014
, “
Investigation of Sulfur Chemistry With Acid Gas Addition in Hydrogen/Air Flames
,”
Appl. Energy
,
113
, pp.
1134
1140
.
61.
Rasmussen
,
C. L.
,
Glarborg
,
P.
, and
Marshall
,
P.
,
2007
, “
Mechanism of Radical Removal by SO2
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
339
347
.
62.
Bohnstein
,
M.
,
Langen
,
J.
,
Frigge
,
L.
,
Stroh
,
A.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2016
, “
Comparison of CFD Simulations With Measurements of Gaseous Sulfur Species Concentrations in a Pulverized Coal Fired 1 MWth Furnace
,”
Energy Fuels
,
30
(
11
), pp.
9836
9849
.
63.
Abián
,
M.
,
Millera
,
Á.
,
Bilbao
,
R.
, and
Alzueta
,
M. U.
,
2015
, “
Impact of SO2 on the Formation of Soot From Ethylene Pyrolysis
,”
Fuel
,
159
, pp.
550
558
.
64.
Selim
,
H.
,
Shoaibi
,
A. A.
, and
Gupta
,
A. K.
,
2013
, “
Role of Toluene in Hydrogen Sulfide Combustion Under Claus Condition
,”
Appl. Energy
,
112
, pp.
60
66
.
65.
Monaghan
,
R. F. D.
, and
Ghoniem
,
A. F.
,
2012
, “
A Dynamic Reduced Order Model for Simulating Entrained Flow Gasifiers. Part II: Model Validation and Sensitivity Analysis
,”
Fuel
,
94
, pp.
280
297
.
66.
Fang
,
Q.
,
Musa
,
A. A. B.
,
Wei
,
Y.
,
Luo
,
Z.
, and
Zhou
,
H.
,
2012
, “
Numerical Simulation of Multifuel Combustion in a 200 MW Tangentially Fired Utility Boiler
,”
Energy Fuels
,
26
(
1
), pp.
313
323
.
67.
Ren
,
F.
,
Li
,
Z.
,
Zhang
,
Y.
,
Sun
,
S.
,
Zhang
,
X.
, and
Chen
,
Z.
,
2007
, “
Influence of the Secondary Air-Box Damper Opening on Airflow and Combustion Characteristics of a Down-Fired 300-MWe Utility Boiler
,”
Energy Fuels
,
21
(
2
), pp.
668
676
.
68.
Hernik
,
B.
,
Latacz
,
G.
, and
Znamirowski
,
D.
,
2016
, “
A Numerical Study on the Combustion Process for Various Configurations of Burners in the Novel Ultra-Supercritical BP-680 Boiler Furnace Chamber
,”
Fuel Process. Technol.
,
152
, pp.
381
389
.
69.
Modlinski
,
N.
, and
Hardy
,
T.
,
2017
, “
Development of High-Temperature Corrosion Risk Monitoring System in Pulverized Coal Boilers Based on Reducing Conditions Identification and CFD Simulations
,”
Appl. Energy
,
204
, pp.
1124
1137
.
70.
Hernik
,
B.
,
2015
, “
Numerical Calculation of the WR-40 Boiler With a Furnace Jet Boiler System
,”
Energy
,
92
(
1
), pp.
54
66
.
71.
Kuang
,
M.
,
Li
,
Z.
,
Wang
,
Z.
,
Jing
,
X.
,
Liu
,
C.
,
Zhu
,
Q.
, and
Ling
,
Z.
,
2014
, “
Combustion and NOx Emission Characteristics With Respect to Staged-Air Damper Opening in a 600 MWe Down-Fired Pulverized Coal Furnace Under Deep-Air-Staging Conditions
,”
Environ. Sci. Technol.
,
48
(
1
), pp.
837
844
.
72.
Al-Abbas
,
A. H.
,
Naser
,
J.
, and
Hussein
,
E. K.
,
2013
, “
Numerical Simulation of Brown Coal Combustion in a 550 MW Tangentially-Fired Furnace Under Different Operating Conditions
,”
Fuel
,
107
, pp.
688
698
.
73.
Kuang
,
M.
,
Zhu
,
Q.
,
Li
,
Z.
, and
Zhang
,
X.
,
2013
, “
Numerical Investigation on Combustion and NOx Emissions of a Down-Fired 350 MWe Utility Boiler With Multiple Injection and Multiple Staging: Effect of the Air Stoichiometric Ratio in the Primary Combustion Zone
,”
Fuel Process. Technol.
,
109
, pp.
32
42
.
74.
Secco
,
S. D.
,
Juan
,
O.
,
Louis-Louisy
,
M.
,
Lucas
,
J.
,
Plion
,
P.
, and
Porcheron
,
L.
,
2015
, “
Using a Genetic Algorithm and CFD to Identify Low NOx Configurations in an Industrial Boiler
,”
Fuel
,
158
, pp.
672
683
.
75.
Zhou
,
H.
,
Yang
,
Y.
,
Dong
,
K.
,
Liu
,
H.
,
Shen
,
Y.
, and
Cen
,
K.
,
2014
, “
Influence of Gas Particle Flow Characteristics of a Low-NOx Swirl Burner on the Formation of High Temperature
,”
Fuel
,
134
, pp.
595
602
.
76.
Costa
,
M.
, and
Azevedo
,
J. L. T.
,
2007
, “
Experimental Characterization of an Industrial Pulverized Coal-Fired Under Staging Conditions
,”
Combust. Sci. Technol.
,
179
(
9
), pp.
1923
1925
.
77.
Wei
,
Y.
,
Kuang
,
M.
,
Zhu
,
Q.
,
Ling
,
Z.
,
Ti
,
S.
, and
Li
,
Z.
,
2017
, “
Alleviating Gas/Particle Flow Deflection and Asymmetric Combustion in a 600 MWe Supercritical Down-Fired Boiler by Expanding Its Furnace Throat Space
,”
Appl. Therm. Eng.
,
123
, pp.
1201
1213
.
78.
Yang
,
W.
,
You
,
R.
,
Wang
,
Z.
,
Zhang
,
H.
,
Zhou
,
Z.
,
Zhou
,
J.
,
Guan
,
J.
, and
Qiu
,
L.
,
2017
, “
Effects of Near-Wall Air Application in a Pulverized-Coal 300 MWe Utility Boiler on Combustion and Corrosive Gases
,”
Energy Fuels
,
31
(
9
), pp.
10075
10081
.
79.
Ma
,
H.
,
Zhou
,
L.
,
Ma
,
S.
, and
Du
,
H.
,
2017
, “
Design of Porous Wall Air Coupling With Air Staged Furnace for Preventing High Temperature Corrosion and Reducing NOx Emissions
,”
Appl. Therm. Eng.
,
124
, pp.
865
870
.
80.
Ma
,
H.
,
Zhou
,
L.
,
Ma
,
S.
,
Yang
,
S.
,
Zhao
,
Y.
,
Zhang
,
W.
, and
Chew
,
J. W.
,
2018
, “
Impact of Multi-Hole-Wall Air Coupling With Air Staged Technology on H2S Evolution During Pulverized Coal Combustion
,”
Fuel Process. Technol.
,
179
, pp.
277
284
.
81.
Liu
,
Y. C.
,
Fan
,
W. D.
, and
Wu
,
M. Z.
,
2017
, “
Experimental and Numerical Studies on the Gas Velocity Deviation in a 600 MWe Tangentially Fired Boiler
,”
Appl. Therm. Eng.
,
110
, pp.
553
563
.
82.
Ma
,
H.
,
Zhou
,
L.
,
Ma
,
S.
,
Wang
,
Z.
,
Du
,
H.
,
Li
,
J.
,
Zhang
,
W.
,
Guo
,
P.
, and
Chew
,
J. W.
,
2018
, “
Impact of the Multihole Wall Air Coupling With Air Staged on NOx Emission During Pulverized Coal Combustion
,”
Energy Fuels
,
32
(
2
), pp.
1464
1473
.
83.
Fan
,
W.
,
Li
,
Y.
, and
Xiao
,
M.
,
2013
, “
Effect of Preoxidation of O2 Concentration on the Reduction Reaction of NO by Char at High Temperature
,”
Ind. Eng. Chem. Res.
,
52
(
18
), pp.
6101
6111
.
You do not currently have access to this content.