Maximum thermal efficiency is commonly assumed to correspond to minimum entropy generation. However, previous work has disproven this assumption for various power generation systems. In order to reconcile these two optimization approaches, second law analysis is performed here in terms of specific entropy generation (SEG), defined as the total entropy generation per mole of fuel. An inverse relationship between thermal efficiency and SEG is derived here, and it is shown that maximum thermal efficiency always corresponds to minimum SEG for lean fuel/air mixtures. Furthermore, the maximum efficiency limit of conventional power plants is shown to differ from the Carnot efficiency. Finally, a modified second law efficiency is introduced, and it is shown that the exhaust combustion products are bounded by a theoretical minimum temperature.

References

References
1.
Leff
,
H. S.
, and
Jones
,
G. L.
,
1975
, “
Irreversibility, Entropy Production, and Thermal Efficiency
,”
Am. J. Phys.
,
43
(
11
), pp.
973
980
.
2.
Salamon
,
P.
,
Nitzan
,
A.
,
Andresen
,
B.
, and
Berry
,
R. S.
,
1980
, “
Minimum Entropy Production and the Optimization of Heat Engines
,”
Phys. Rev. A
,
21
(
6
), pp.
2115
2129
.
3.
Salamon
,
P.
, and
Nitzan
,
A.
,
1981
, “
Finite Time Optimizations of a Newton's Law Carnot Cycle
,”
J. Chem. Phys.
,
74
(
6
), pp.
3546
3560
.
4.
Salamon
,
P.
,
Hoffmann
,
K. H.
,
Schubert
,
S.
,
Berry
,
R. S.
, and
Andresen
,
B.
,
2001
, “
What Conditions Make Minimum Entropy Production Equivalent to Maximum Power Production
,”
J. Nonequilib. Thermodyn.
,
26
(1), pp.
73
83
.
5.
Haseli
,
Y.
,
2013
, “
Optimization of Regenerative Brayton Cycle by Maximization of a Newly Defined Second Law Efficiency
,”
Energy Convers. Manage.
,
68
, pp.
133
140
.
6.
Haseli
,
Y.
,
2013
, “
Performance of Irreversible Heat Engines at Minimum Entropy Generation
,”
Appl. Math. Model.
,
37
(
23
), pp.
9810
9817
.
7.
Haseli
,
Y.
,
2016
, “
Efficiency of Irreversible Brayton Cycles at Minimum Entropy Generation
,”
Appl. Math. Model.
,
40
(
19–20
), pp.
8366
8376
.
8.
Feidt
,
M.
,
Costea
,
M.
,
Petrescu
,
S.
, and
Stanciu
,
C.
,
2016
, “
Nonlinear Thermodynamic Analysis and Optimization of a Carnot Engine Cycle
,”
Entropy
,
18
(
7
), p.
243
.
9.
Haseli
,
Y.
,
2018
, “
Specific Entropy Generation in a Gas Turbine Cycle
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032002
.
10.
Haseli
,
Y.
,
2018
, “
Efficiency Improvement of Thermal Power Plants Through Specific Entropy Generation
,”
Energy Convers. Manage.
,
159
, pp.
109
120
.
11.
H.
,
Teng
,
C. M.
,
Kinoshita
,
S. M.
,
Masutani
,
L.
, and
Zhou
,
J.
,
1998
, “
Entropy Generation in Multicomponent Reacting Flows
,”
ASME J. Energy Resour. Technol.
,
120
(
3
), pp.
226
232
.
12.
Beretta
,
G. P.
, and
Keck
,
J. C.
,
1983
, “
Energy and Entropy Balances in a Combustion Chamber. Analytical Solution, Combust
,”
Sci. Technol.
,
30
(
1–6
), pp.
19
29
.
13.
Bejan
,
A.
,
1996
, “
Models of Power Plants That Generate Minimum Entropy While Operating at Maximum Power
,”
Am. J. Phys.
,
64
(
8
), pp.
1054
1059
.
14.
Bejan
,
A.
,
1996
, “
The Equivalence of Maximum Power and Minimum Entropy Generation Rate in the Optimization of Power Plants
,”
ASME J. Energy Resour. Technol.
,
118
(
2
), pp.
98
101
.
15.
Klein
,
S.
, and
Nellis
,
G.
, 2012,
Thermodynamics
,
1st ed.
,
Cambridge University Press
, New York, Chap. 13.
16.
Gyftopoulos
,
E. P.
, and
Beretta
,
G. P.
,
2010
,
Thermodynamics: Foundations and Applications
,
Dover Publications
,
Mineola, NY
, Chap. 31.
17.
Cengel
,
Y.
, and
Boles
,
M. A.
,
Thermodynamics: An Engineering Approach
,
5th ed.
,
McGraw-Hills
,
New York
, Chap. 15.
18.
Li
,
T.
,
Fu
,
W.
, and
Zhu
,
J.
,
2014
, “
An Integrated Optimization for Organic Rankine Cycle Based on Entransy Theory and Thermodynamics
,”
Energy
,
72
, pp.
561
573
.
19.
Adams
,
T.
, and
Mac Dowell
,
N.
,
2016
, “
Off-Design Point Modelling of a 420 MW CCGT Power Plant Integrated With an Amine-Based Post-Combustion CO2 Capture and Compression Process
,”
Appl. Energy
,
178
, pp.
681
702
.
20.
Mac Dowell
,
N.
, and
Shah
,
N.
,
2015
, “
The Multi-Period Optimisation of an Amine-Based CO2 Capture Process Integrated With a Super-Critical Coal-Fired Power Station for Flexible Operation
,”
Comput. Chem. Eng.
,
74
, pp.
169
183
.
21.
Mansour
,
M. S.
,
Chen
,
Y. C.
, and
Peters
,
N.
,
1999
, “
Highly Strained Turbulent Rich Methane Flames Stabilized by Hot Combustion Products
,”
Combust. Flame
,
116
(
1–2
), pp.
136
153
.
22.
Leff
,
H. S.
,
1987
, “
Thermal Efficiency at Maximum Work Output: New Results for Old Heat Engines
,”
Am. J. Phys.
,
55
, pp.
602
609
.
You do not currently have access to this content.