Gas and liquid production from nanopore shale resources substantially increased during the past decade due to the advances in horizontal drilling and multistage hydraulic fracturing. Transport properties and mechanisms deviate from their bulk behavior when the pore sizes in unconventional formations are in the order of nanoscale. This is due to the dominant molecule–pore wall interaction effects comparing to molecule–molecule interactions in nanopores. Thus, the physics of multiphase flow in current commercial simulators should be changed to include the effect of pore size on both transport mechanisms and fluid properties. In this study, we analyze the effect of fluid confinement on phase behavior, fluid properties, and condensate banking around the hydraulic fracture where nanopores perform as the dominate storage region and dispersed with pores with bulk behavior. We modified critical properties of the fluid components for different pore sizes in the phase behavior calculations. Using experimental results, we developed a new correlation for estimating mean pore size as a function of permeability and porosity. Moreover, we considered pore size distribution of a shale sample to divide the reservoir into different regions. For each region, a specific permeability is assigned using the new developed correlation. Three different types of connectivity are considered between pores and its impact on production mechanisms is analyzed. Results of this study indicated that neglecting nanopore confinement effect on phase behavior results in an underestimation of the production while neglecting permeability change with pore size results in an overestimation of hydrocarbon production. The connectivity of different pore sizes has a significant impact on reservoir performance and determines the dominant factor.

References

References
1.
Zhang
,
F.
, and
Yang
,
D.
,
2017
, “
Effects of Non-Darcy Flow and Penetrating Ratio on Performance of Horizontal Wells With Multiple Fractures in a Tight Formation
,”
ASME J. Energy Resour. Technol.
,
140
(
3
). p.
032903.
2.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2014
, “
Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042905
.
3.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Wang
,
Y.
,
Chen
,
Z.
, and
Yu
,
H.
,
2018
, “
Pressure-Transient Behavior of Multisegment Horizontal Wells with Nonuniform Production: Theory and Case Study
,”
J. Energy Resour. Technol.
,
140
(
9
), p.
093101
.
4.
Ahn
,
C.
,
Dilmore
,
R.
, and
Wang
,
J.
,
2016
, “
Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoirs: A Three-Dimensional, Two-Phase Model
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012903
.
5.
Rahman
,
M. K.
,
Salim
,
M. M.
, and
Rahman
,
M. M.
,
2012
, “
Analytical Modeling of Non-Darcy Flow-Induced Conductivity Damage in Propped Hydraulic Fractures
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
043101
.
6.
Seales
,
M. B.
,
Ertekin
,
T.
, and
Wang
,
Y. J.
,
2017
, “
Recovery Efficiency in Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042901
.
7.
Lu
,
J.
,
Shawket
,
G.
, and
Zhu
,
T.
,
2011
, “
Non-Darcy Binomial Deliverability Equations for Partially Penetrating Vertical Gas Wells and Horizontal Gas Wells
,”
ASME J. Energy Resour. Technol.
,
133
(
4
), p.
043101
.
8.
Tavassoli
,
S.
,
Yu
,
W.
,
Javadpour
,
F.
, and
Sepehrnoori
,
K.
,
2013
, “
Well Screen and Optimal Time of Refracturing: A Barnett Shale Well
,”
J. Pet. Eng.
,
2013
, pp.
1
10
.
9.
Javadpour
,
F.
,
2009
, “
Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone)
,”
J. Can. Pet. Technol.
,
48
(
8
), pp.
16
21
.
10.
Salahshoor
,
S.
,
Fahes
,
M.
, and
Teodoriu
,
C.
,
2017
, “
A Review on the Effect of Confinement on Phase Behavior in Tight Formations
,”
J. Nat. Gas Sci. Eng.
,
51
, pp.
89
103
.
11.
Swami
,
V.
,
2012
, “
Shale Gas Reservoir Modeling: From Nanopores to Laboratory
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
, Oct. 8–10, Paper No.
SPE-163065-STU
.
12.
Boosari
,
S.
,
Umut
,
A.
, and
Eshkalak
,
M. O.
,
2016
, “
Unconventional Resource's Production Under Desorption-Induced Effects
,”
Petroleum
,
2
(
2
), pp.
148
155
.
13.
Osholake
,
T.
,
Wang
,
J. Y.
, and
Ertekin
,
T.
,
2012
, “
Factors Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013402
.
14.
Shakiba
,
M.
,
de Araujo Cavalcante Filho
,
J. S.
, and
Sepehrnoori
,
K.
,
2018
, “
Using Embedded Discrete Fracture Model (EDFM) in Numerical Simulation of Complex Hydraulic Fracture Networks Calibrated by Microseismic Monitoring Data
,”
J. Nat. Gas Sci. Eng.
,
55
, pp.
495
507
.
15.
Abouie
,
A.
,
Korrani
,
A. K. N.
,
Shirdel
,
M.
, and
Sepehrnoori
,
K.
,
2017
, “
Comprehensive Modeling of Scale Deposition by Use of a Coupled Geochemical and Compositional Wellbore Simulator
,”
SPE J.
,
22
(
4
), pp.
1225
1241
.
16.
Cipolla
,
C.
,
Lolon
,
E.
, and
Mayerhofer
,
M.
,
2009
, “
Reservoir Modeling and Production Evaluation in Shale-Gas Reservoirs
,”
International Petroleum Technology Conference
,
Doha, Qatar
, Dec. 7–9, Paper No.
IPTC-13185-MS
.
17.
Gelb
,
L. D.
,
Gubbins
,
K. E.
,
Radhakrishnan
,
R.
, and
Sliwinska-Bartkowiak
,
M.
,
1999
, “
Phase Separation in Confined Systems
,”
Rep. Prog. Phys.
,
62
(
12
), pp.
1573
1659
.
18.
Akkutlu
,
I. Y.
, and
Rahmani Didar
,
B.
,
2013
, “
Pore-Size Dependence of Fluid Phase Behavior and Properties in Organic-Rich Shale Reservoirs
,”
SPE International Symposium on Oilfield Chemistry
,
Woodlands, TX
, Apr. 8–10, Paper No.
SPE-164099-MS
.
19.
Devegowda
,
D.
,
Sapmanee
,
K.
,
Civan
,
F.
, and
Sigal
,
R.
,
2012
, “
Phase Behavior of Gas Condensates in Shales Due to Pore Proximity Effects: Implications for Transport, Reserves and Well Productivity
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
, Oct. 8–10, Paper No.
SPE-160099-MS
.
20.
Jin
,
L.
,
Ma
,
Y.
, and
Jamili
,
A.
,
2013
, “
Modifying Van Der Waals Equation of State to Consider Influence of Confinement on Phase Behavior
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
, Sept. 30–Oct. 2, Paper No.
SPE-160476-MS
.
21.
Sanaei
,
A.
,
Jamili
,
A.
, and
Callard
,
J.
,
2014
, “
Effect of Pore Size Distribution and Connectivity on Phase Behavior and Gas Condensate Production From Unconventional Resources
,”
SPE Unconventional Resources Conference
, The Woodlands, TX, Apr. 1–3, Paper No.
SPE 168970-MS
.
22.
Haddad
,
M.
, and
Sepehrnoori
,
K.
,
2015
, “
Simulation of Hydraulic Fracturing in Quasi-Brittle Shale Formations Using Characterized Cohesive Layer: Stimulation Controlling Factors
,”
J. Unconv. Oil Gas Resour.
,
9
, pp.
65
83
.
23.
Zhou
,
D.
,
Zheng
,
P.
,
Peng
,
J.
, and
He
,
P.
,
2015
, “
Induced Stress and Interaction of Fractures During Hydraulic Fracturing in Shale Formation
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062902
.
24.
Kamali
,
A.
, and
Pournik
,
M.
,
2016
, “
Fracture Closure and Conductivity Decline Modeling–Application in Unpropped and Acid Etched Fractures
,”
J. Unconv. Oil Gas Resour.
,
14
, pp.
44
55
.
25.
Kamali
,
A.
, and
Pournik
,
M.
,
2015
, “
An Investigation of Rough Surface Closure With Application in Fracturing
,”
49th American Rock Mechanics Association Conference
, San Francisco, CA, June 28–July 1, Paper No.
ARMA-2015-420
.
26.
Boosari
,
S. S. H.
,
2017
, “
Developing a Smart Proxy for Predicting the Fluid Dynamic in DamBreak Flow Simulation by Using Artificial Intelligence
,”
Ph.D. thesis
,
West Virginia University
,
Morgantown, WV
.https://www.researchgate.net/publication/326331796
27.
Khatibi
,
S.
,
Ostadhassan
,
M.
,
Tuschel
,
D.
,
Gentzis
,
T.
,
Bubach
,
B.
, and
Carvajal-Ortiz
,
H.
,
2017
, “
Raman Spectroscopy to Study Thermal Maturity and Elastic Modulus of Kerogen
,”
Int. J. Coal Geol.
,
185
, pp.
103
118
.
28.
Aghajanpour
,
A.
,
Fallahzadeh
,
S. H.
,
Khatibi
,
S.
,
Hossain
,
M. M.
, and
Kadkhodaie
,
A.
,
2017
, “
Full Waveform Acoustic Data as an Aid in Reducing Uncertainty of Mud Window Design in the Absence of Leak-Off Test
,”
J. Nat. Gas Sci. Eng.
,
45
, pp.
786
796
.
29.
Jiang
,
J.
,
Sandler
,
S. I.
,
Schenk
,
M.
, and
Smit
,
B.
,
2005
, “
Adsorption and Separation of Linear and Branched Alkanes on Carbon Nanotube Bundles From Configurational-Bias Monte Carlo Simulation
,”
Phys. Rev. B
,
72
(
4
), p.
045447
.
30.
Zarragoicoechea
,
G. J.
, and
Kuz
,
V. A.
,
2004
, “
Critical Shift of a Confined Fluid in a Nanopore
,”
Fluid Phase Equilib.
,
220
(
1
), pp.
7
9
.
31.
Hamada
,
Y.
,
Koga
,
K.
, and
Tanaka
,
H.
,
2007
, “
Phase Equilibria and Interfacial Tension of Fluids Confined in Narrow Pores
,”
J. Chem. Phys.
,
127
(
8
), p.
084908
.
32.
Travalloni
,
L.
,
Castier
,
M.
,
Tavares
,
F. W.
, and
Sandler
,
S. I.
,
2010
, “
Critical Behavior of Pure Confined Fluids From an Extension of the Van Der Waals Equation of State
,”
J. Supercrit. Fluids
,
55
(
2
), pp.
455
461
.
33.
Singh
,
S. K.
,
Sinha
,
A.
,
Deo
,
G.
, and
Singh
,
J. K.
,
2009
, “
Vapor−Liquid Phase Coexistence, Critical Properties, and Surface Tension of Confined Alkanes
,”
J. Phys. Chem. C
,
113
(
17
), pp.
7170
7180
.
34.
Alharthy
,
N. S.
,
Nguyen
,
T.
,
Teklu
,
T.
,
Kazemi
,
H.
, and
Graves
,
R.
,
2013
, “
Multiphase Compositional Modeling in Small-Scale Pores of Unconventional Shale Reservoirs
,”
SPE Annual Technical Conference and Exhibition
, New Orleans, LA, Sept. 30–Oct. 2, Paper No.
SPE-166306-MS
.
35.
Khoshghadam
,
M.
,
Khanal
,
A.
, and
Lee
,
W. J.
,
2015
, “
Numerical Study of Impact of Nano-Pores on Gas-Oil Ratio and Production Mechanisms in Liquid-Rich Shale Oil Reservoirs
,”
Unconventional Resources Technology Conference
, San Antonio, TX, July 20–22, Paper No.
URTEC 2154191-MS
.
36.
Haidar
,
B.
,
2015
, “
Impact of Capillary Pressure and Critical Properties Shift Due to Confinement on Hydrocarbon Production From Shale Reservoirs
,”
MS thesis
, Department of Energy Resources Engineering, Stanford University, Stanford, CA.https://pangea.stanford.edu/ERE/pdf/pereports/MS/Haider2015.pdf
37.
Khoshghadam
,
M.
,
Khanal
,
A.
, and
Lee
,
W. J.
,
2015
, “
Numerical Study of Production Mechanisms and Gas-Oil Ratio Behavior of Liquid-Rich Shale Oil Reservoirs
,”
Annual Technical Conference and Exhibition
, Houston, TX, Sept. 28–30, Paper No.
SPE-175137-MS
.
38.
Alfi
,
M.
,
An
,
C.
,
Cao
,
Y.
,
Yan
,
B.
,
Barrufet
,
M. A.
, and
Killough
,
J. E.
,
2017
, “
Pore Size Variability and Sieving Effect in Liquid Shale—A Multiple Permeability Approach and Eagle Ford Case Study
,”
SPE Reservoir Simulation Conference
, Montgomery, TX, Feb. 20–22, Paper No.
SPE-182643-MS
.
39.
Al Ismail
,
M. I.
, and
Horne
,
R. N.
,
2014
, “
An Investigation of Gas-Condensate Flow in Liquid-Rich Shales
,”
SPE Unconventional Resources Conference
, Woodlands, TX, Apr. 1–3, Paper No.
SPE 169021-MS
.
40.
Wang
,
L.
,
Neeves
,
K.
,
Yin
,
X.
, and
Ozkan
,
E.
,
2014
, “
Experimental Study and Modeling of the Effect of Pore Size Distribution on Hydrocarbon Phase Behavior in Nanopores
,”
SPE Annual Technical Conference and Exhibition
, Amsterdam, Oct. 27–29, The Netherlands, Paper No.
SPE-170894-MS
.
41.
Parsa
,
E.
,
Yin
,
X.
, and
Ozkan
,
E.
,
2015
, “
Direct Observation of the Impact of Nanopore Confinement on Petroleum Gas Condensation
,”
SPE Annual Technical Conference and Exhibition
, Houston, TX, Sept. 28–30, Paper No.
SPE-175118-MS
.
42.
Luo
,
S.
,
Nasrabadi
,
H.
, and
Lutkenhaus
,
J. L.
,
2016
, “
Effect of Confinement on the Bubble Points of Hydrocarbons in Nanoporous Media
,”
AIChE J.
,
62
(
5
), pp.
1772
1780
.
43.
Luo
,
S.
,
Lutkenhaus
,
J. L.
, and
Nasrabadi
,
H.
,
2016
, “
Use of Differential Scanning Calorimetry to Study Phase Behavior of Hydrocarbon Mixtures in Nano-Scale Porous Media
,”
J. Pet. Sci. Eng.
,
163
, pp.
731
738
.
44.
Alfi
,
M.
,
Nasrabadi
,
H.
, and
Banerjee
,
D.
,
2016
, “
Experimental Investigation of Confinement Effect on Phase Behavior of Hexane, Heptane and Octane Using Lab-on-a-Chip Technology
,”
Fluid Phase Equilib.
,
423
, pp.
25
33
.
45.
Alfi
,
M.
,
Banerjee
,
D.
, and
Nasrabadi
,
H.
,
2016
, “
Effect of Confinement on the Dynamic Contact Angle of Hydrocarbons
,”
Energy Fuels
,
30
(
11
), pp.
8962
8967
.
46.
Abouie
,
A.
,
Rezaveisi
,
M.
,
Mohebbinia
,
S.
, and
Sepehrnoori
,
K.
,
2016
, “
Static and Dynamic Comparison of Equation of State Solid Model and PC-SAFT for Modeling Asphaltene Phase Behavior
,”
SPE Western Regional Meeting,
Anchorage, AK
, May 23–26, Paper No.
SPE-180480-MS
.
47.
Hosseininoosheri
,
P.
,
Lashgari
,
H.
, and
Sepehrnoori
,
K.
,
2017
, “
Numerical Prediction of Reservoir Souring Under the Effect of Temperature, Ph, and Salinity on the Kinetics of Sulfate-Reducing Bacteria
,”
SPE International Conference on Oilfield Chemistry
,
Montgomery, TX
, Apr. 3–5, Paper No.
SPE-184562-MS
.
48.
Arshadi
,
M.
,
Zolfaghari
,
A.
,
Piri
,
M.
,
Al-Muntasheri
,
G. A.
, and
Sayed
,
M.
,
2017
, “
The Effect of Deformation on Two-Phase Flow Through Proppant-Packed Fractured Shale Samples: A Micro-Scale Experimental Investigation
,”
Adv. Water Resour.
,
105
, pp.
108
131
.
49.
Frooqnia
,
A.
,
2014
, “
Numerical Simulation and Interpretation of Borehole Fluid-Production Measurements
,”
Ph.D. dissertation
, The University of Texas at Austin, Austin, TX.http://hdl.handle.net/2152/25989
50.
Behzadinasab
,
M.
,
2015
, “
Development and Application of a Parallel Chemical Compositional Reservoir Simulator
,”
M. Sc. thesis
, The University of Texas at Austin, Austin, TX.http://hdl.handle.net/2152/31992
51.
Mehrabi
,
M.
,
Javadpour
,
F.
, and
Sepehrnoori
,
K.
,
2017
, “
Analytical Analysis of Gas Diffusion Into Non-Circular Pores of Shale Organic Matter
,”
J. Fluid Mech.
,
819
, pp.
656
677
.
52.
Neshat
,
S.
, and
Pope
,
G. A.
,
2018
, “
Three-Phase Relative Permeability and Capillary Pressure Models With Hysteresis and Compositional Consistency
,” SPE Reservoir Simulation Conference, Montgomery, TX, Feb. 20–22, Paper No.
SPE-182592-MS
.
53.
Neshat
,
S. S.
,
Okuno
,
R.
, and
Pope
,
G. A.
,
2018
, “
A Rigorous Solution to the Problem of Phase Behavior in Unconventional Formations With High Capillary Pressure
,”
SPE J.
, (epub).
54.
Findenegg
,
G. H.
,
Gross
,
S.
, and
Michalski
,
T.
,
1994
, “
Pore Condensation in Controlled-Pore Glass. An Experimental Test of the Saam-Cole Theory
,”
Stud. Surf. Sci. Catal.
,
87
, pp.
71
80
.
55.
Groß
,
S.
, and
Findenegg
,
G. H.
,
1997
, “
Pore Condensation in Novel Highly Ordered Mesoporous Silica
,”
Berichte Der Bunsengesellschaft Für Physikalische Chem.
,
101
(
11
), pp.
1726
1730
.
56.
Voronov
,
V. P.
,
Belyakov
,
M. Y.
,
Gorodetskii
,
E. E.
,
Kulikov
,
V. D.
,
Muratov
,
A. R.
, and
Nagaev
,
V. B.
,
2003
, “
Phase Behavior of Methane-Pentane Mixture in Bulk and in Porous Media
,”
Transp. Porous Media
,
52
(
2
), pp.
123
140
.
57.
Sigmund
,
P. M.
,
Dranckhuk
,
P. M.
,
Morrow
,
N. R.
, and
Purvis
,
R. A.
,
1973
, “
Retrograde Condensation in Porous Media
,”
SPE J.
,
12
(
2
), pp.
93
104
.
58.
Ma
,
Y.
,
2014
, “
Effects of Porous Media on Fluid Phase Behavior in Shale Resources
,” MS thesis, Mewbourne School of Petroleum and Geological Engineering, University of Oklahoma, Norman, OK.
59.
Ma
,
Y.
,
Jamili
,
A.
, and
Jin
,
L.
,
2013
, “
Investigating the Effect of Pore Proximity on Phase Behavior and Fluid Properties in Shale Formations
,”
SPE Annual Technical Conference and Exhibition
, New Orleans, LA, Sept. 30–Oct. 2, Paper No.
SPE-166192-MS
.
60.
Hosseininoosheri
,
P.
,
Lashgari
,
H. R.
, and
Sepehrnoori
,
K.
,
2016
, “
A Novel Method to Model and Characterize in-Situ Bio-Surfactant Production in Microbial Enhanced Oil Recovery
,”
Fuel
,
183
, pp.
501
511
.
61.
Boosari
,
H.
,
Sina
,
S.
,
Aybar
,
U.
, and
Eshkalak
,
M. O.
,
2015
, “
The Effect of Desorption-Induced Porosity-Permeability Changes and Geomechanics on Production From U.S. Shale Gas Formations
,” American Rock Mechanics Association conference, San Francisco, CA, June 28–July 1, Paper No.
ARMA-2015-256
.
62.
Khatibi
,
S.
,
Aghajanpour
,
A.
,
Ostadhassan
,
A.
, and
Farzay
,
O.
,
2017
, “
Evaluating Single-Parameter Parabolic Failure Criterion in Wellbore Stability Analysis
,”
J. Nat. Gas Sci. Eng.
,
50
, pp.
166
180
.
63.
Rubin
,
B.
,
2010
, “
Accurate Simulation of Non Darcy Flow in Stimulated Fractured Shale Reservoirs
,”
SPE Western Regional Meeting
, Anaheim, CA, May 27–29, Paper No.
SPE 132093-MS
.
64.
Sanaei
,
A.
,
Jamili
,
A.
, and
Callard
,
J.
,
2014
, “
Effects of Non-Darcy Flow and Pore Proximity on Gas Condensate Production From Nanopore Unconventional Resources
,”
Fifth International Conference on Porous Media and Their Applications in Science,
Engineering and Industry, Fifth International Conference on Porous Media and its Applications in Science and Engineering (ICPM5), Kona, Hawaii, June 22–27.
65.
Sanaei
,
A.
,
Jamili
,
A.
, and
Callard
,
J.
,
2014
, “
Optimum Fracture Spacing in the Eagle Ford Gas Condensate Window
,”
Unconventional Resources Technology Conference (URTeC)
, Denver, CO, Paper No.
URTEC-1922964
.
66.
Boosari
,
S. S. H.
,
Aybar
,
U.
, and
Eshkalak
,
M. O.
,
2015
, “
Carbon Dioxide Storage and Sequestration in Unconventional Shale Reservoirs
,”
J. Geosci. Environ. Prot.
,
3
(
1
), pp.
7
15
.
67.
Corey
,
A. T.
,
1986
,
Mathematics of Immiscible Fluids in Porous Media
,
Water Resources
,
Littleton, CO
.
You do not currently have access to this content.