Nowadays, production performance evaluation of a multifractured horizontal well (MFHW) has attracted great attention. This paper presents a mathematical model of an MFHW with considering segmented fracture (SF) for better evaluation of fracture and reservoir properties. Each SF consists of two parts: fracture segment far from wellbore (FSFW) and fracture segment near to wellbore (FSNW) in segmented fracture model (SFM), which is different from fractures consists of only one segment in common fracture model (CFM). Employing the source function and Green's function, Newman's product method, Duhamel principle, Stehfest inversion algorithm, and Laplace transform, production solution of an MFHW can be obtained using SFM. Total production rate is mostly contributed from FSNW rather than FSFW in many cases; ignoring this phenomenon may lead to obvious erroneous in parameter interpretation. Thus, clear distinctions can be found between CFM and SFM on the compound type curves. By using decline curve analysis (DCA), the influences of sensitive parameters (e.g., dimensionless half-length, dimensionless production rate, conductivity, and distance between SF) on compound type curves are analyzed. The results of sensitivity analysis are benefit of parameter estimation during history matching.

References

References
1.
Guo
,
T.
,
Li
,
Y.
,
Ding
,
Y.
,
Qu, Z.
,
Gai, N.
, and
Rui, Z.
,
2017
, “
Evaluation of Acid Fracturing Treatments in Shale Formation
,”
Energy Fuel
,
31
(
10
), pp.
10479
10489
.
2.
Guo
,
J.
,
Luo
,
B.
,
Lu
,
C.
,
Lai, J.
, and
Ren, J.
,
2017
, “
Numerical Investigation of Hydraulic Fracture Propagation in a Layered Reservoir Using the Cohesive Zone Method
,”
Eng. Fract. Mech.
,
186
, pp.
195
207
.
3.
He
,
Y.
,
Cheng
,
S.
,
Li
,
L.
,
Mu
,
G.
,
Zhang
,
T.
,
Xu
,
H.
,
Qin
,
J.
, and
Yu
,
H.
,
2015
, “
Waterflood Direction and Front Characterization With Multiple Methods: A Case Study in Changqing Oilfield, China
,”
SPE Oil and Gas India Conference and Exhibition
, Mumbai, India, Nov. 24–26, SPE Paper No.
SPE-178053-MS
.
4.
Sun
,
J.
,
Gamboa
,
E.
,
Schechter
,
D.
, and
Rui, Z.
,
2016
, “
An Integrated Workflow for Characterization and Simulation of Complex Fracture Networks Utilizing Microseismic and Horizontal Core Data
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
1347
1360
.
5.
Rui
,
Z.
,
Guo
,
T.
,
Feng
,
Q.
,
Qu
,
Z.
,
Qi
,
N.
, and
Gong
,
F.
,
2018
, “
Influence of Gravel on the Propagation Pattern of Hydraulic Fracture in the Glutenite Reservoir
,”
J. Pet. Sci. Eng.
,
165
, pp.
627
639
.
6.
Qin
,
J.
,
Liu
,
Y.
,
Feng
,
Y.
,
Ding
,
Y.
,
Liu
,
L.
, and
He
,
Y.
,
2018
, “
New Well Pattern Optimization Methodology in Mature Low-Permeability Anisotropic Reservoirs
,”
J. Geophys. Eng.
,
15
(
1
), pp.
93
105
.
7.
von Hohendorff Filho
,
J.
, and
Schiozer
,
D.
,
2018
, “
Correcting Inflow Performance Relationship Curves for Explicitly Coupling Reservoir Simulations and Production Systems Simulations
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032006
.
8.
Rui
,
Z.
,
Lu
,
J.
,
Zhang
,
Z.
,
Guo
,
R.
,
Ling
,
K.
,
Zhang
,
R.
, and
Patil
,
S.
,
2017
, “
A Quantitative Oil and Gas Reservoir Evaluation System for Development
,”
J. Nat. Gas Sci. Eng.
,
42
, pp.
31
39
.
9.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Wang
,
Y.
,
Chen
,
Z.
, and
Yu
,
H.
,
2018
, “
Pressure-Transient Behavior of Multisegment Horizontal Wells With Non-uniform Production: Theory and Case Study
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
093101
.
10.
Seales
,
M. B.
,
Ertekin
,
T.
, and
Wang
,
J. Y.
,
2017
, “
Recovery Efficiency in Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042901
.
11.
Rui
,
Z.
,
Han
,
G.
,
Zhang
,
H.
,
Wang
,
S.
,
Pu
,
H.
, and
Ling
,
K.
,
2017
, “
A New Model to Evaluate Two Leak Points in a Gas Pipeline
,”
J. Nat. Gas Sci. Eng.
,
46
, pp.
491
497
.
12.
Niu
,
G.
,
Sun
,
J.
,
Parsegov
,
S.
, and
Schechter
,
D.
,
2017
, “
Integration of Core Analysis, Pumping Schedule and Microseismicity to Reduce Uncertainties of Production Performance of Complex Fracture Networks for Multi-Stage Hydraulically Fractured Reservoirs
,”
SPE Eastern Regional Meeting
, Lexington, KY, Oct. 4–6, SPE Paper No.
SPE-187524-MS
.
13.
Cui
,
G.
,
Wang
,
Y.
,
Ren
,
S.
, and
Zhang
,
L.
,
2018
, “
Assessing the Combined Influence of Fluid-Rock Interactions on Reservoir Properties and Injectivity During CO2 Storage in Saline Aquifers
,”
Energy
,
155
, pp.
281
296
.
14.
Rui
,
Z.
,
Wang
,
X.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213
, pp.
76
91
.
15.
He
,
Y.
,
Cheng
,
S.
,
Li
,
S.
,
Huang
,
Y.
,
Qin
,
J.
,
Hu
,
L.
, and
Yu
,
H.
,
2017
, “
A Semianalytical Methodology to Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir
,”
SPE J.
,
22
(
3
), pp.
924
939
.
16.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Wang
,
Y.
,
Feng
,
N.
,
Hu
,
L.
,
Huang
,
Y.
,
Fang
,
R.
, and
Yu
,
H.
,
2017
, “
A Semianalytical Approach to Estimate the Locations of Malfunctioning Horizontal Wellbore Through Bottom-Hole Pressure and Its Application in Hudson Oilfield
,”
SPE Middle East Oil & Gas Show and Conference
, Manama, Bahrain, Mar. 6–9, SPE Paper No.
SPE-183796-MS
.
17.
Larsen
,
L.
, and
Hegre
,
T. M.
,
1991
, “
Pressure-Transient Behavior of Horizontal Wells With Finite-Conductivity Vertical Fractures
,”
International Arctic Technology Conference
, Anchorage, AK, May. 29–31, SPE Paper No.
SPE-22076-MS
.
18.
Larsen
,
L.
, and
Hegre
,
T. M.
,
1994
, “
Pressure Transient Analysis of Multifractured Horizontal Wells
,”
SPE Annual Technical Conference and Exhibition
, New Orleans, LA, Sep. 25–28, SPE Paper No.
SPE-28389-MS
.
19.
Kuchuk
,
F. J.
, and
Habusky
,
T. M.
,
1994
, “
Pressure Behavior of Horizontal Wells With Multiple Fractures
,”
University of Tulsa Centennial Petroleum Engineering Symposium
, Tulsa, OK, Aug. 29–31, SPE Paper No.
SPE-27971-MS
.
20.
Yang
,
D.
,
Zhang
,
F.
,
Styles
,
J. A.
, and
Gao
,
J.
,
2015
, “
Performance Evaluation of a Horizontal Well With Multiple Fractures by Use of a Slab-Source Function
,”
SPE J
,
20
(
3
), pp.
652
662
.
21.
Horne
,
R. N.
, and
Temeng
,
K. O.
,
1995
, “
Relative Productivities and Pressure Transient Modeling of Horizontal Wells With Multiple Fractures
,”
Middle East Oil Show
, Bahrain, Mar. 11–14, SPE Paper No.
SPE-29891-MS
.
22.
Chen
,
C. C.
, and
Raghavan
,
R. S.
,
1997
, “
A Multiply-Fractured Horizontal Well in a Rectangular Drainage Region
,”
SPE J.
,
2
(
4
), pp.
455
465
.
23.
Al, Rbeawi
,
S. J. H.
, and
Djebbar
,
T.
,
2012
, “
Transient Pressure Analysis of a Horizontal Well With Multiple Inclined Hydraulic Fractures Using Type-Curve Matching
,”
SPE International Symposium and Exhibition on Formation Damage Control
, Lafayette, LA, Feb. 15–17, SPE Paper No.
SPE-149902-MS
.
24.
Zhang
,
F.
, and
Yang
,
D.
,
2017
, “
Effects of Non-Darcy Flow and Penetrating Ratio on Performance of Horizontal Wells With Multiple Fractures in a Tight Formation
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032903
.
25.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Chen
,
J.
,
Wang
,
Y.
,
Feng
,
N.
, and
Yu
,
H.
,
2017
, “
Successful Application of Well Testing and Electrical Resistance Tomography to Determine Production Contribution of Individual Fracture and Water-Breakthrough Locations of Multifractured Horizontal Well in Changqing Oil Field, China
,”
SPE Annual Technical Conference and Exhibition
, San Antonio, TX, Oct. 9–11, SPE Paper No.
SPE-187285-MS
.
26.
Qin
,
J.
,
Cheng
,
S.
,
He
,
Y.
,
Luo
,
L.
,
Wang
,
Y.
,
Fang
,
N.
,
Zhang
,
T.
,
Qin
,
G.
, and
Yu
,
H.
,
2017
, “
Estimation of Non-Uniform Production Rate Distribution of Multi-Fractured Horizontal Well Through Pressure Transient Analysis: Model and Case Study
,”
SPE Annual Technical Conference and Exhibition
, San Antonio, TX, Oct. 9–11, SPE Paper No.
SPE-187412-MS
.
27.
Lee
,
W. J.
, and
Holditch
,
S. A.
,
1981
, “
Fracture Evaluation With Pressure Transient Testing in Low-Permeability Gas Reservoirs
,”
J. Pet. Technol.
,
33
(
9
), pp.
1776
1792
.
28.
Russell
,
D. G.
, and
Truitt
,
N. E.
,
1964
, “
Transient Pressure Behavior in Vertically Fractured Reservoirs
,”
J. Pet. Technol.
,
16
(
10
), pp.
1159
1170
.
29.
He
,
Y.
,
Cheng
,
S.
,
Li
,
L.
,
Mu
,
G.
,
Zhang
,
T.
,
Xu
,
H.
,
Qin
,
J.
, and
Yu
,
H.
,
2017
, “
Waterflood Direction and Front Characterization With Four-Step Work Flow: A Case Study in Changqing Oil Field, China
,”
SPE Reservoir Eval. Eng.
,
20
(
3
), pp.
708
725
.
30.
Barree
,
R. D.
,
Cox
,
S. A.
,
Gilbert
,
J. V.
, and
Dobson
,
M.
,
2005
, “
Closing the Gap: Fracture Half Length From Design, Buildup, and Production Analysis
,”
SPE Prod. Facil.
,
20
(
4
), pp.
274
285
.
31.
Qin
,
J.
,
Cheng
,
S.
,
He
,
Y.
,
Li
,
D.
,
Zhang
,
J.
,
Feng
,
D.
, and
Yu
,
H.
,
2018
, “
Rate Decline Analysis for Horizontal Wells With Multiple Sections
,”
Geofluids
(preprint).
32.
He
,
Y.
,
Cheng
,
S.
,
Rui
,
Z.
,
Qin
,
J.
,
Fu
,
L.
,
Shi
,
J.
,
Wang
,
Y.
,
Li
,
D.
,
Patil
,
S.
,
Yu
,
H.
, and
Lu
,
J.
,
2018
, “
An Improved Rate-Transient Analysis Model of Multi-Fractured Horizontal Wells With Non-Uniform Hydraulic Fracture Properties
,”
Energies
,
11
(
2
), p.
393
.
33.
Arps
,
J. J.
,
1945
, “
Analysis of Decline Curves
,”
Pet. Trans.
,
160
(
1
), pp.
228
247
.
34.
Fetkovich
,
M. J.
,
1980
, “
Decline Curve Analysis Using Type Curves
,”
J. Pet. Technol.
,
32
(
6
), pp.
1065
1077
.
35.
Fetkovich
,
M. J.
,
Vienot
,
M. E.
,
Bradley
,
M. D.
, and
Kiesow
,
U. G.
,
1987
, “
Decline Curve Analysis Using Type Curves: Case Histories
,”
SPE Form. Eval
,
2
(
4
), pp.
637
656
.
36.
Blasingame
,
T. A.
,
McCray
,
T. L.
, and
Lee
,
W. J.
,
1991
, “
Decline Curve Analysis for Variable Pressure Drop/Variable Flowrate Systems
,”
SPE Gas Technology Symposium
, Houston, TX, Jan. 22–24, SPE Paper No.
SPE-21513-MS
.
37.
Agarwal
,
R. G.
,
Gardner
,
D. C.
,
Kleinsteiber
,
S. W.
, and
Fussell
,
D. D.
,
1999
, “
Analyzing Well Production Data Using Combined-Type-Curve and Decline-Curve Analysis Concepts
,”
SPE Reserv. Eval. Eng
,
2
(
5
), pp.
478
486
.
38.
Pratikno
,
H.
,
Rushing
,
J. A.
, and
Blasingame
,
T. A.
,
2003
, “
Decline Curve Analysis Using Type Curves—Fractured Wells
,”
SPE Annual Technical Conference and Exhibition
, Denver, CO, Oct. 5–8, SPE Paper No.
SPE-84287-MS
.
39.
Clarkson
,
C. R.
, and
Pedersen
,
P. K.
,
2010
, “
Tight Oil Production Analysis: Adaptation of Existing Rate-Transient Analysis Techniques
,”
Canadian Unconventional Resources and International Petroleum Conference
, Calgary, AB, Canada, Oct. 19–21, SPE Paper No.
SPE-137352-MS
.
40.
Duong
,
A. N.
,
2011
, “
Rate-Decline Analysis for Fracture-Dominated Shale Reservoirs
,”
SPE Reserv. Eval. Eng.
,
14
(
3
), pp.
377
387
.
41.
Duong
,
A. N.
,
2014
, “
Rate-Decline Analysis for Fracture-Dominated Shale Reservoirs—Part 2
,”
SPE/CSUR Unconventional Resources Conference
, Calgary, AB, Canada, Sep. 30–Oct. 2, SPE Paper No.
SPE-171610-MS
.
42.
Nobakht
,
M.
,
Clarkson
,
C. R.
, and
Kaviani
,
D.
,
2012
, “
New and Improved Methods for Performing Rate-Transient Analysis of Shale Gas Reservoirs
,”
SPE Reserv. Eval. Eng.
,
15
(
3
), pp.
335
350
.
43.
Kupchenko
,
C. L.
,
Gault
,
B. W.
, and
Mattar
,
L.
,
2008
, “
Tight Gas Production Performance Using Decline Curves
,”
CIPC/SPE Gas Technology Symposium 2008 Joint Conference
, Calgary, AB, Canada, Jun. 16–19, SPE Paper No.
SPE-114991-MS
.
44.
Ilk
,
D.
,
Rushing
,
J. A.
,
Perego
,
A. D.
, and
Blasingame
,
T. A.
,
2008
, “
Exponential Vs. Hyperbolic Decline in Tight Gas Sands: Understanding the Origin and Implications for Reserve Estimates Using Arps' Decline Curves
,”
SPE Annual Technical Conference and Exhibition
, Denver, CO, Sep. 21–24, SPE Paper No.
SPE-116731-MS
.
45.
Clarkson
,
C. R.
, and
Beierle
,
J. J.
,
2011
, “
Integration of Microseismic and Other Post-Fracture Surveillance With Production Analysis: A Tight Gas Study
,”
J. Nat. Gas Sci. Eng.
,
3
(
2
), pp.
382
401
.
46.
Wanderley de Holanda, R.
,
Gildin, E.
, and
Valko, P. P.
, 2018, “
Combining Physics, Statistics, and Heuristics in the Decline-Curve Analysis of Large Data Sets in Unconventional Reservoirs
,”
SPE Reserv. Eval. Eng.
(preprint).
47.
Raghavan
,
R.
, and
Chen
,
C.
,
2017
, “
Rate Decline, Power Laws, and Subdiffusion in Fractured Rocks
,”
SPE Reserv. Eval. Eng.
,
20
(
3
), pp.
738
751
.
48.
Jones
,
R. S.
,
2017
, “
Producing-Gas/Oil-Ratio Behavior of Multifractured Horizontal Wells in Tight Oil Reservoirs
,”
SPE Reserv. Eval. Eng.
,
20
(
3
), pp.
589
601
.
49.
Gringarten
,
A. C.
, and
Ramey
,
H. J.
,
1973
, “
The Use of Source and Green's Functions in Solving Unsteady-Flow Problems in Reservoirs
,”
SPE J.
,
13
(
5
), pp.
285
296
.
50.
Newman
,
A. B.
,
1936
, “
Heating and Cooling Rectangular and Cylindrical Solids
,”
Ind. Eng. Chem.
,
28
(
5
), pp.
545
548
.
51.
Van Everdingen
,
A. F.
, and
Hurst
,
W.
,
1949
, “
The Application of the Laplace Transformation to Flow Problems in Reservoirs
,”
J. Pet. Technol.
,
12
(
12
), pp.
305
324
.
52.
Tompson
,
L. G.
, and
Reynolds
,
A. C.
,
1984
, “
Analysis of Variablerate Well-Test Pressure Data Using Duhamel's Principle
,”
SPE Form. Eval.
,
1
(
5
), pp.
453
469
.
53.
Stehfest
,
H.
,
1970
, “
Remark on Algorithm 368 [D5]: Numerical Inversion of Laplace Transforms
,”
Commun. ACM
,
13
(
10
), p.
624
.
You do not currently have access to this content.