Enhancing a combustion system requires increased combustion efficiency, fuel savings, and reduction of combustion emissions. In this paper, the combustion of CH4 in the combustor of an industrial gas turbine is studied and NO and CO formation/emission is simulated numerically. The objective of the current work is to investigate the influence of combustive parameters and varying the percentage of distributed air flow rate via burning, recirculation, and dilution zone on the reactive flow characteristics, NOx and CO emissions. The governing equations of mass, momentum, energy, turbulence quantities Renormalized group (RNG) (k–ε), mixture fraction and its variance are solved by the finite volume method. The formation and emission of NOx is numerically simulated in a postprocessing fashion, due to the low concentration of the pollutants as compared to the main combustion species. The present work focuses on different physical mechanisms of NOx formation. The thermal-NOx and prompt-NOx mechanism are considered for modeling the NOx source term in the transport equation. Results show that in a gaseous-fueled combustor, the thermal NOx is the dominant mechanism for NOx formation. Particularly, the simulation provides more insight into the correlation between the maximum combustor temperature, exhaust average temperatures, and the thermal NO concentration. Results indicate that the exhaust temperature and NOx concentration decrease while the excess air factor increases. Moreover, results demonstrate that as the combustion air temperature increases, the combustor temperature increases and the thermal NOx concentration increases dramatically. Furthermore, results demonstrate that the NO concentration at the combustor exit is at maximum value in a swirl angle of 55 deg and a gradual rise in the NOx concentration is detected as the combustion fuel temperature increases. In addition, results demonstrate that the air distribution of the first case at laboratory conditions is optimal where the mass fractions of NO and CO are minimum.

References

References
1.
Meunier
,
H.
,
Costa
,
M.
, and
Carvalho
,
M. G.
,
1998
, “
The Formation and Destruction of NO in Turbulent Propane Diffusion Flames
,”
Fuel
,
77
(
15
), pp.
1705
1714
.
2.
Barths
,
N.
,
Peters
,
H.
,
Brehm
,
N.
,
Mack
,
A.
,
Pfitzner
,
M.
, and
Smiljanovski
,
V.
,
1998
, “
Simulation of Pollutant Formation in a Gas-Turbine Combustor Using Unsteady Flamelets
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
1841
1847
.
3.
Sharma
,
N. Y.
, and
Som
,
S. K.
,
2004
, “
Influence of Fuel Volatility and Spray Parameters on Combustion Characteristics and NOx Emission in a Gas Turbine Combustor
,”
Appl. Therm. Eng.
,
24
(
5–6
), pp.
885
903
.
4.
Loffler
,
G.
,
Sieber
,
R.
,
Harasek
,
M.
,
Hofbauer
,
H.
,
Hauss
,
R.
, and
Landauf
,
J.
,
2006
, “
NOx Formation in Natural Gas Combustion—A New Simplified Reaction Scheme for CFD Calculations
,”
Fuel
,
85
(
4
), pp.
513
523
.
5.
Biagioli
,
F.
, and
Güthe
,
F.
,
2007
, “
Effect of Pressure and Fuel–Air Unmixedness on NOx Emissions From Industrial Gas Turbine Burner
,”
Combust. Flame
,
151
(
1–2
), pp.
274
288
.
6.
Benini
,
E.
,
Pandolfo
,
S.
, and
Zoppellari
,
S.
,
2009
, “
Reduction of NO Emissions in a Turbojet Combustor by Direct Water/Steam Injection: Numerical and Experimental Assessment
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3506
3510
.
7.
Fichet
,
V.
,
Kanniche
,
M.
,
Plion
,
P.
, and
Gicquel
,
O.
,
2010
, “
A Reactor Network Model for Predicting NOx Emissions in Gas Turbines
,”
Fuel
,
89
(
9
), pp.
2202
2210
.
8.
Khoshhal
,
A.
,
Rahimi
,
M.
, and
Alsairafi
,
A. A.
,
2011
, “
CFD Study on Influence of Fuel Temperature on NOx Emission in a HiTAC Furnace
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1421
1427
.
9.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2011
, “
Distributed Swirl Combustion for Gas Turbine Application
,”
Appl. Energy
,
88
(
12
), pp.
4898
4907
.
10.
Gobbato
,
P.
,
Masi
,
M.
,
Toffolo
,
A.
,
Lazzaretto
,
A.
, and
Tanzini
,
G.
,
2012
, “
Calculation of the Flow Field and NOx Emissions of a Gas Turbine Combustor by a Coarse Computational Fluid Dynamics Model
,”
Energy
,
45
(
1
), pp.
445
455
.
11.
Kruse
,
S.
,
Kerschgens
,
B.
,
Berger
,
L.
,
Varea
,
E.
, and
Pitsch
,
H.
,
2015
, “
Experimental and Numerical Study of MILD Combustion for Gas Turbine Applications
,”
Appl. Energy
,
148
(
15
), pp.
456
465
.
12.
Said
,
A. O.
,
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2016
, “
Dual-Location Fuel Injection Effects on Emissions and NO/OH Chemiluminescence in a High Intensity Combustor
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042208
.
13.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2014
, “
Dual Injection Distributed Combustion for Gas Turbine Application
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011601
.
14.
Khalil
,
A. E. E.
,
Gupta
,
A. K.
,
Bryden
,
K. M.
, and
Lee
,
S. C.
,
2012
, “
Mixture Preparation Effects on Distributed Combustion for Gas Turbine Applications
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032201
.
15.
Farokhipour
,
A.
,
Hamidpour
,
E.
, and
Amani
,
E.
,
2018
, “
A Numerical Study of NOx Reduction by Water Spray Injection in Gas Turbine Combustion Chambers
,”
Fuel
,
212
, pp.
173
186
.
16.
Asgari
,
B.
, and
Amani
,
E.
,
2017
, “
A Multi-Objective CFD Optimization of Liquid Fuel Spray Injection in Dry-Low-Emission Gas-Turbine Combustors
,”
Appl. Energy
,
203
, pp.
696
710
.
17.
Love
,
N. D.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2009
, “
Rapid Characterization of Radiation and Pollutant Emissions of Biodiesel and Hydrocarbon Liquid Fuels
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
012202
.
18.
Tahmasebzadehbaie
,
M.
, and
Sayyaadi
,
H.
,
2016
, “
Efficiency Enhancement and NOx Emission Reduction of a Turbo-Compressor Gas Engine by Mass and Heat Recirculation of Flue Gases
,”
Appl. Therm. Eng.
,
99
, pp.
661
671
.
19.
Sanusi Yi
,
S.
,
Habib
,
M. A.
, and
Mokheimer
,
E. M. A.
,
2015
, “
Experimental Study on the Effect of Hydrogen Enrichment of Methane on the Stability and Emission of Non-Premixed Swirl Stabilized Combustor
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032203
.
20.
Al-Malak
,
A.
,
Elshafei
,
M.
,
Habib
,
M. A.
, and
Al-Zaharnah
,
I.
,
2016
, “
Soft Analyzer for Monitoring NOx Emissions From a Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
031101
.
21.
Gubba
,
S. R.
,
Ingham
,
D. B.
,
Larsen
,
K. J.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Tan
,
H. Z.
,
2012
, “
Numerical Modelling of the Co-Firing of Pulverised Coal and Straw in a 300 MWe Tangentially Fired Boiler
,”
Fuel Process. Technol.
,
104
, pp.
181
188
.
22.
Li
,
S.
,
Fu
,
Z.
,
Duan
,
X.
,
Cheng
,
C.
,
Shen
,
Y.
,
Liu
,
B.
, and
Wang
,
R.
,
2016
, “
Influence of Combustion System Retrofit on NOx Formation Characteristics in a 300 MW Tangentially Fired Furnace
,”
Appl. Therm. Eng.
,
98
, pp.
766
777
.
23.
Hashemi
,
S. A.
,
Fattahi
,
A.
,
Sheikhzadeh
,
G. A.
, and
Mehrabian
,
M. A.
,
2011
, “
Investigation of the Effect of Air Turbulence Intensity on NOx Emission in Non-Premixed Hydrogen and Hydrogen-Hydrocarbon Composite Fuel Combustion
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10159
10168
.
24.
Miller
,
J. A.
, and
Bowman
,
C.
,
1989
, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
15
(
4
), pp.
287
388
.
25.
Baulch
,
D. L.
,
Bowers
,
M.
,
Malcolm
,
D. G.
, and
Tuckerman
,
R. T.
,
1986
, “
Evaluated Kinetic Data for High Temperature Reactions
,”
J. Phys. Chem. Ref. Data
,
15
(
2
), p.
46510
.
26.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1984
, “
Chemical Kinetic Modeling of Hydrocarbon Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
1
), pp.
1
57.
27.
Williams
,
B. A.
,
Sutton
,
J. A.
, and
Fleming
,
J. W.
,
2009
, “
The Role of Methylene in Prompt NO Formation
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
343
350
.
28.
Kim
,
N.
, and
Kim
,
Y.
,
2017
, “
Multi-Environment Probability Density Function Approach for Turbulent Partially-Premixed Methane/Air Flame With Inhomogeneous Inlets
,”
Combust. Flame
,
182
, pp.
190
205
.
29.
Correa
,
S. M.
, and
Gulati
,
A.
,
1994
, “
Raman Measurements and Joint PDF Modeling of a Non-Premixed Bluff-Body Stabilization Methane Flame
,”
Symp. (Int.) Combust.
,
25
(
1
), pp.
1167
1173
.
30.
Habib
,
M. A.
,
Elshafei
,
M.
, and
Dajani
,
M.
,
2008
, “
Influence of Combustion Parameters on NOx Production in an Industrial Boiler
,”
Comput. Fluids
,
37
(
1
), pp.
12
23
.
You do not currently have access to this content.