With the increasing demand for electric power, the development of new power generation technologies is gaining increased attention. The supercritical carbon dioxide (S-CO2) cycle is one such technology, which has relatively high efficiency, compactness, and potentially could provide complete carbon capture. The S-CO2 cycle technology is adaptable for almost all of the existing heat sources such as solar, geothermal, fossil, nuclear power plants, and waste heat recovery systems. However, it is known that optimal combinations of operating conditions, equipment, working fluid, and cycle layout determine the maximum achievable efficiency of a cycle. Within an S-CO2 cycle, the compression device is of critical importance as it is operating near the critical point of CO2. However, near the critical point, the thermo-physical properties of CO2 are highly sensitive to changes of pressure and temperature. Therefore, the conditions of CO2 at the compressor inlet are critical in the design of such cycles. Also, the impurity species diluted within the S-CO2 will cause deviation from an ideal S-CO2 cycle as these impurities will change the thermodynamic properties of the working fluid. Accordingly, the current work examines the effects of different impurity compositions, considering binary mixtures of CO2 and He, CO, O2, N2, H2, CH4, or H2S on various S-CO2 cycle components. The second part of the study focuses on the calculation of the basic cycles and component efficiencies. The results of this study will provide guidance and define the optimal composition of mixtures for compressors and coolers.

References

References
1.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” Massachusetts Institute of Technology, Cambridge, MA, Report No.
MIT-ANP-TR-100
.http://web.mit.edu/22.33/www/dostal.pdf
2.
Maroto-Valer
,
M. M.
,
2010
,
Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology Volume 1: Carbon Dioxide (CO2) Capture, Transport and Industrial Applications
,
Woodhead Publishing Limited
, Cambridge, UK.
3.
Vesely
,
L.
,
Dostal
,
V.
,
Bartos
,
O.
, and
Novotny
,
V.
,
2016
, “
Pinch Point Analysis of Heat Exchangers for Supercritical Carbon Dioxide With Gaseous Admixtures in CCS Systems
,”
Energy Procedia
,
86
, pp.
489
499
.
4.
Manikantachari
,
K. R. V.
,
Vesely
,
L.
,
Martin
,
S.
,
Bobren-Diaz
,
J. O.
, and
Vasu
,
S.
,
2018
, “
Reduced Chemical Kinetic Mechanisms for Oxy/Methane Supercritical CO2 Combustor Simulations
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092202
.
5.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
.
6.
Pryor
,
O.
,
Barak
,
S.
,
Lopez
,
J.
,
Ninnemann
,
E.
,
Koroglu
,
B.
,
Nash
,
L.
, and
Vasu
,
S.
,
2017
, “
High Pressure Shock Tube Ignition Delay Time Measurements During Oxy-Methane Combustion With High Levels of CO2 Dilution
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042208
.
7.
Hoeftberger
,
D.
, and
Karl
,
J.
,
2016
, “
The Indirectly Heated Carbonate Looping Process for CO2 Capture-a Concept With Heat Pipe Heat Exchanger
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042211
.
8.
Lin
,
W.
,
Huang
,
M.
,
He
,
H.
, and
Gu
,
A.
,
2009
, “
A Transcritical CO2 Rankine Cycle With LNG Cold Energy Utilization and Liquefaction of CO2 in Gas Turbine Exhaust
,”
ASME J. Energy Resour. Technol.
,
131
(
4
), p.
042201
.
9.
Yin
,
H.
,
Sabau
,
A. S.
,
Conklin
,
J. C.
,
McFarlane
,
J.
, and
Qualls
,
A. L.
,
2013
, “
Mixtures of SF6-CO2 as Working Fluids for Geothermal Power Plants
,”
Appl. Energy
,
106
, pp.
243
253
.
10.
Hu
,
L.
,
Chen
,
D.
,
Huang
,
Y.
,
Li
,
L.
,
Cao
,
Y.
,
Yuan
,
D.
,
Wang
,
J.
, and
Pan
,
L.
,
2015
, “
Investigation on Performance of the Supercritical Brayton Cycle with CO2-Based Binary Mixture as Working Fluid for an Energy Transportation System of a Nuclear Reactor
,”
Energy
,
89
, pp.
874
886
.
11.
Vesely
,
L.
,
Dostal
,
V.
, and
Stepanek
,
J.
, “
Effect of Gaseous Admixtures on Cycles With Supercritical Carbon Dioxide
,”
ASME
Paper No. GT2016-57644.
12.
Vesely
,
L.
, and
Dostal
,
V.
,
2017
, “
Effect of Multicomponent Mixtures on Cycles With Supercritical Carbon Dioxide
,”
ASME
Paper No. GT2017-64044.
13.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
ASME
Paper No. 68-GT-23.
14.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic Transport Properties-REFPROP, Version 9.1
,” National Institute of Standards and Technology, Gaithersburg, MD.
15.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
16.
Span
,
R.
,
Eckermann
,
T.
,
Herrig
,
S.
,
Hielscher
,
S.
,
Jager
,
A.
, and
Thol
,
M.
,
2015
, “
TREND: Thermodynamic Reference and Engineering Data 2.0
,” Ruhr-Universitaet Bochum, Bochum, Germany.
17.
Manikantachari
,
K.
,
Martin
,
S.
,
Bobren-Diaz
,
J.
, and
Vasu
,
S.
, “
Thermal and Transport Properties for the Simulation of Direct-Fired sCO2 Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121505
.
18.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.
19.
Scalabrin
,
G.
,
Marchi
,
P.
,
Finezzo
,
F.
, and
Span
,
R.
,
2006
, “
A Reference Multiparameter Thermal Conductivity Equation for Carbon Dioxide With an Optimized Functional Form
,”
J. Phys. Chem. Ref. Data
,
35
(
4
), pp.
1549
1575
.
20.
Lemmon
,
E. W.
,
Jacobsen
,
R. T.
,
Penoncello
,
S. G.
, and
Friend
,
D. G.
,
2000
, “
Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa
,”
J. Phys. Chem. Ref. Data
,
29
(
3
), pp.
331
385
.
21.
Lemmon
,
E. W.
, and
Jacobsen
,
R. T.
,
1999
, “
A Generalized Model for the Thermodynamic Properties of Mixtures
,”
Int. J. Thermophys.
,
20
(
3
), pp.
825
835
.
22.
Lemmon
,
E. W.
, and
Jacobsen
,
R. T.
,
2004
, “
Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air
,”
Int. J. Thermophys.
,
25
(
1
), pp.
21
69
.
23.
Ngo
,
T. L.
,
Kato
,
Y.
,
Nikitin
,
K.
, and
Ishizukam
,
T.
,
2007
,
Heat Transfer and Pressure Drop Correlations of Microchannel Heat Exchangers With S-Shaped and Zigzag Fins for Carbon Dioxide Cycles
,
Tokyo Institute of Technology
,
Japan
.
24.
Kröger
,
D. G.
,
Air-Cooled Heat Exchangers and Cooling Towers V1
,
Penwell Corp
,
Tulsa, OK
, p.
c2004.2v
.
You do not currently have access to this content.