Producer gas from biomass gasification contains impurities like tars, particles, alkali salts, and sulfur/nitrogen compounds. As a result, a number of process steps are required to condition the producer gas before utilization as a syngas and further upgrading to final chemicals and fuels. Here, we study the concept of using molten carbonate electrolysis cells (MCEC) both to clean and to condition the composition of a raw syngas stream, from biomass gasification, for further upgrading into synthetic natural gas (SNG). A mathematical MCEC model is used to analyze the impact of operational parameters, such as current density, pressure and temperature, on the quality and amount of syngas produced. Internal rate of return (IRR) is evaluated as an economic indicator of the processes considered. Results indicate that, depending on process configuration, the production of SNG can be boosted by approximately 50–60% without the need of an additional carbon source, i.e., for the same biomass input as in standalone operation of the GoBiGas plant.

References

References
1.
IEA
,
2013
, “
Secure and Efficient Electricity Supply
,” International Energy Agency, Paris, France.
2.
Koytsoumpa
,
E.-I.
,
Bergins
,
C.
,
Buddenberg
,
T.
,
Wu
,
S.
,
Sigurbjörnsson
,
Ó.
,
Tran
,
K. C.
, and
Kakaras
,
E.
,
2016
, “
The Challenge of Energy Storage in Europe: Focus on Power to Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p. 042002.
3.
Mesfun
,
S.
,
Sanchez
,
D. L.
,
Leduc
,
S.
,
Wetterlund
,
E.
,
Lundgren
,
J.
,
Biberacher
,
M.
, and
Kraxner
,
F.
,
2017
, “
Power-to-Gas and Power-to-Liquid for Managing Renewable Electricity Intermittency in the Alpine Region
,”
Renewable Energy
,
107
, pp.
361
372
.
4.
Chen
,
L.
,
Chen
,
F.
, and
Xia
,
C.
,
2014
, “
Direct Synthesis of Methane From CO2–H2O Co-Electrolysis in Tubular Solid Oxide Electrolysis Cells
,”
Energy Environ. Sci.
,
7
(
12
), pp.
4018
4022
.
5.
Gaudillere
,
C.
,
Navarrete
,
L.
, and
Serra
,
J. M.
,
2014
, “
Syngas Production at Intermediate Temperature Through H2O and CO2 Electrolysis With a Cu-Based Solid Oxide Electrolyzer Cell
,”
Int. J. Hydrogen Energy
,
39
(
7
), pp.
3047
3054
.
6.
Giglio
,
E.
,
Lanzini
,
A.
,
Santarelli
,
M.
, and
Leone
,
P.
,
2015
, “
Synthetic Natural Gas Via Integrated High-Temperature Electrolysis and Methanation—Part I: Energy Performance
,”
J. Energy Storage
,
1
, pp.
22
37
.
7.
Graves
,
C.
,
Ebbesen
,
S. D.
, and
Mogensen
,
M.
,
2011
, “
Co-Electrolysis of CO2 and H2O in Solid Oxide Cells: Performance and Durability
,”
Solid State Ionics
,
192
(
1
), pp.
398
403
.
8.
Javad Kasaei
,
M.
,
Gandomkar
,
M.
, and
Nikoukar
,
J.
,
2017
, “
Optimal Operational Scheduling of Renewable Energy Sources Using Teaching–Learning Based Optimization Algorithm by Virtual Power Plant
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p. 062003.
9.
Hulteberg
,
P. C.
, and
Karlsson
,
H. T.
,
2009
, “
A Study of Combined Biomass Gasification and Electrolysis for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
772
782
.
10.
Clausen
,
L. R.
,
Houbak
,
N.
, and
Elmegaard
,
B.
,
2010
, “
Technoeconomic Analysis of a Methanol Plant Based on Gasification of Biomass and Electrolysis of Water
,”
Energy
,
35
(
5
), pp.
2338
2347
.
11.
McKellar
,
M. G.
,
O'Brien
,
J. E.
,
Stoots
,
C. M.
, and
Hawkes
,
G. L.
,
2007
, “
Process Model for the Production of Syngas Via High Temperature Co-Electrolysis
,”
ASME
,
6
, pp.
691
699
.
12.
McKellar
,
M. G.
,
Hawkes
,
G. L.
, and
O'Brien
,
J. E.
,
2008
, “
The Production of Syngas Via High Temperature Electrolysis and Biomass Gasification
,”
ASME
Paper No. IMECE2008-68900
.
13.
Dean
,
J.
,
Braun
,
R.
,
Penev
,
M.
,
Kinchin
,
C.
, and
Muñoz
,
D.
,
2011
, “
Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p. 031801.
14.
Tanaka
,
Y.
,
Mesfun
,
S.
,
Umeki
,
K.
,
Toffolo
,
A.
,
Tamaura
,
Y.
, and
Yoshikawa
,
K.
,
2015
, “
Thermodynamic Performance of a Hybrid Power Generation System Using Biomass Gasification and Concentrated Solar Thermal Processes
,”
Appl. Energy
,
160
, pp.
664
672
.
15.
El-Emam
,
R. S.
, and
Dincer
,
I.
,
2016
, “
Assessment and Evolutionary Based Multi-Objective Optimization of a Novel Renewable-Based Polygeneration Energy System
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p. 012003.
16.
Sadeghi
,
S.
, and
Ameri
,
M.
,
2014
, “
Exergy Analysis of Photovoltaic Panels-Coupled Solid Oxide Fuel Cell and Gas Turbine-Electrolyzer Hybrid System
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p. 031201.
17.
Hu
,
L.
,
Lindbergh
,
G.
, and
Lagergren
,
C.
,
2016
, “
Performance and Durability of the Molten Carbonate Electrolysis Cell and the Reversible Molten Carbonate Fuel Cell
,”
J. Phys. Chem. C
,
120
(
25
), pp.
13427
13433
.
18.
Di Giulio
,
N.
,
Bosio
,
B.
,
Cigolotti
,
V.
, and
Nam
,
S. W.
,
2012
, “
Experimental and Theoretical Analysis of H2S Effects on MCFCs
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
19329
19336
.
19.
Alamia
,
A.
,
Larsson
,
A.
,
Breitholtz
,
C.
, and
Thunman
,
H.
,
2017
, “
Performance of Large-Scale Biomass Gasifiers in a Biorefinery, a State-of-the-Art Reference
,”
Int. J. Energy Res.
,
41
(
14
), pp.
2001
2019
.
20.
Clarke
,
S. H.
,
Dicks
,
A. L.
,
Pointon
,
K.
,
Smith
,
T. A.
, and
Swann
,
A.
,
1997
, “
Catalytic Aspects of the Steam Reforming of Hydrocarbons in Internal Reforming Fuel Cells
,”
Catal Today
,
38
(
4
), pp.
411
423
.
21.
Kowalik
,
P.
,
Antoniak-Jurak
,
K.
,
Błesznowski
,
M.
,
Herrera
,
M. C.
,
Larrubia
,
M. A.
,
Alemany
,
L. J.
, and
Pieta
,
I. S.
,
2015
, “
Biofuel Steam Reforming Catalyst for Fuel Cell Application
,”
Catal Today
,
254
, pp.
129
134
.
22.
Stoots
,
C. M.
,
O'Brien
,
J. E.
,
Herring
,
J. S.
, and
Hartvigsen
,
J. J.
,
2009
, “
Syngas Production Via High-Temperature Coelectrolysis of Steam and Carbon Dioxide
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
1
), p.
011014
.
23.
Zarzycki
,
R.
, and
Panowski
,
M.
,
2017
, “
Analysis of the Flue Gas Preparation Process for the Purposes of Carbon Dioxide Separation Using the Adsorption Methods
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p. 032008.
24.
Hu
,
L.
,
Rexed
,
I.
,
Lindbergh
,
G.
, and
Lagergren
,
C.
,
2014
, “
Electrochemical Performance of Reversible Molten Carbonate Fuel Cells
,”
Int. J. Hydrogen Energy
,
39
(
23
), pp.
12323
12329
.
25.
Hu
,
L.
,
Lindbergh
,
G.
, and
Lagergren
,
C.
,
2016
, “
Operating the Nickel Electrode With Hydrogen-Lean Gases in the Molten Carbonate Electrolysis Cell (MCEC)
,”
Int. J. Hydrogen Energy
,
41
(
41
), pp.
18692
18698
.
26.
Li
,
X. T.
,
Grace
,
J. R.
,
Lim
,
C. J.
,
Watkinson
,
A. P.
,
Chen
,
H. P.
, and
Kim
,
J. R.
,
2004
, “
Biomass Gasification in a Circulating Fluidized Bed
,”
Biomass Bioenergy
,
26
(
2
), pp.
171
193
.
27.
Mesfun
,
S.
, and
Toffolo
,
A.
,
2015
, “
Integrating the Processes of a Kraft Pulp and Paper Mill and Its Supply Chain
,”
Energy Convers. Manage.
,
103
, pp.
300
310
.
28.
Lazzaretto
,
A.
, and
Toffolo
,
A.
,
2008
, “
A Method to Separate the Problem of Heat Transfer Interactions in the Synthesis of Thermal Systems
,”
Energy
,
33
(
2
), pp.
163
170
.
29.
Kemp
,
C.-I.
,
2007
,
Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy
,
2nd ed.
,
Butterworth-Heinemann
,
Oxford, UK
.
30.
Alamia
,
A.
,
Thunman
,
H.
, and
Seemann
,
M.
,
2016
, “
Process Simulation of Dual Fluidized Bed Gasifiers Using Experimental Data
,”
Energy Fuels
,
30
(
5
), pp.
4017
4033
.
31.
Andersson
,
J.
,
Lundgren
,
J.
, and
Marklund
,
M.
,
2014
, “
Methanol Production Via Pressurized Entrained Flow Biomass Gasification —Techno-Economic Comparison of Integrated Vs. Stand-Alone Production
,”
Biomass Bioenergy
,
64
, pp.
256
268
.
32.
Zhang
,
W.
,
He
,
J.
,
Engstrand
,
P.
, and
Björkqvist
,
O.
,
2015
, “
Economic Evaluation on Bio-Synthetic Natural Gas Production Integrated in a Thermomechanical Pulp Mill
,”
Energies
,
8
(
11
), pp.
12795
12809
.
33.
Della Pietra
,
M.
,
McPhail
,
S. J.
,
Prabhakar
,
S.
,
Desideri
,
U.
,
Nam
,
S. W.
, and
Cigolotti
,
V.
,
2016
, “
Accelerated Test for MCFC Button Cells: First Findings
,”
Int. J. Hydrogen Energy
,
41
(
41
), pp.
18807
18814
.
34.
Heyne
,
S.
, and
Harvey
,
S.
,
2014
, “
Impact of Choice of CO2 Separation Technology on Thermo-Economic Performance of Bio-SNG Production Processes
,”
Int. J. Energy Res.
, 38, pp.
299
318
.
35.
Mesfun
,
S.
,
Anderson
,
J.-O.
,
Umeki
,
K.
, and
Toffolo
,
A.
,
2016
, “
Integrated SNG Production in a Typical Nordic Sawmill
,”
Energies
,
9
(
5
), p.
333
.
You do not currently have access to this content.