The benefits of energy storage technologies (ESTs) as a step of managing the future energy demand, by considering the case of electric power systems (EPS) in arid regions, were the focus of this study. The evaluation of different forms of ESTs' integration into the existing EPS, especially those with higher potential for solving issues related to the optimization of the power supply and high demands at peak loads, was carried out. Two interactive programs—ESCT and ES-Select—were utilized in the feasibility study that allowed evaluating various ESTs with regard to their characteristics, costs, benefits, which was carried out for the first time in this region. The study analyzed a variety of power ranges within the power system components including bulk generation, transmission, distribution, commercial and industrial, and residential users. These programs were used to address the price and cost components assuming a normal distribution, as well as the cycle life, size, efficiency, cash flow, payback, benefits range, and market potential of 19 important ESTs about the arid region. The obtained data were all combined to verify the appropriateness of these ESTs, which has been followed by determining the optimal use and best probable physical placement of these ESTs within the EPS, by allowing for the economic, environmental, and technical feasibility. The study showed that the compressed air energy storage (CAES) is the most promising option followed by pumped hydro storage (PHS) and sodium-sulfur battery (NaS), based on the technical and economic evaluations of the different ESTs in arid regions.

References

References
1.
Williams
,
A. R.
,
2012
, “Future of Energy Storage: Technologies and Policy,”
Royal Academy of Engineering
,
London
.
2.
Koeppel
,
G.
,
2007
, “
Reliability Consideration of Future Energy Systems: Multi-Carrier System and the Effect of Energy Storage
,”
Ph.D. dissertation
, Swiss Federal Institute of Technology, Zurich, Switzerland.https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/123495/eth-29505-02.pdf?sequence=2&isAllowed=y
3.
Eyer
,
J.
, and
Corey
,
G.
,
2010
, “
Energy Storage for the Electricity Grid: Benefits and Markets Potential Assessment Guide. A Study for the U.S. DOE Energy Storage Systems Program
,” Sandia National Laboratories, California, Report No. 2010-085.
4.
DOE Energy Storage Computational Tool Overview
,
2012
, US-DOE, Department of Energy, accessed July 30, 2018, https://www.smartgrid.gov
5.
Denholm
,
P.
, and
Kulcinski
,
G. L.
,
2004
, “
Life Cycle Energy Requirements and Greenhouse Gas Emissions From Large-Scale Energy Storage Systems
,”
Energy Convers. Manage.
,
45
(
13–14
), pp.
2153
2172
.
6.
Denholm
,
P.
, and
Holloway
,
T.
,
2005
, “
Improved Accounting of Emissions From the Utility Energy Storage System Operation
,”
Environ. Sci. Technol.
,
39
(
23
), pp.
9016
9022
.
7.
Mclarnon
,
F. R.
, and
Cairns
,
E. J.
,
1989
, “
Energy Storage
,”
Ann. Rev. Energy
,
14
(
1
), pp.
241
271
.
8.
Baker
,
J. N.
, and
Collinson
,
A.
,
1999
, “
Electrical Energy Storage at the Turn of the Millennium
,”
Power Eng. J.
,
6
(
3
), pp.
107
112
.
9.
Dti Report
,
2004
, “
Status of Electrical Energy Storage Systems
,” UK Department of Trade and Industry, Report No. DG/DTI/00050/00/00, URN No. 04/1878.
10.
Australian Greenhouse Office
,
2005
, “
Advanced Electricity Storage Technologies Programme
,” Australian Greenhouse Office, Australia, pp.
1
35
.
11.
Zhao
,
B. O.
,
Chengshan
,
W.
, and
Xuesong
,
Z.
,
2013
, “
A Suitable Survey Energy for Island-Alone Microgrid and Commercial Operation Mode
,”
Autom. Electric Power Syst.
,
37
, pp.
21
27
.
12.
Enke
,
Y.
, and
Liangjin
,
C.
,
2011
, “
Characteristics and Comparison of Large-Scale Electric Energy Storage
,”
Zhejiang Electric Power
,
12
, pp.
4
8
.
13.
Wenxing
,
W.
, and
Lu
,
J.
,
2013
, “
Choice of Micro-Grid Energy Storage and Its Hybrid Energy Storage
,”
Power Supply Technol.
,
37
, pp.
1697
1699
.
14.
Ammar
,
F. B.
,
Hafsa
,
I. H.
, and
Hammami
,
F.
,
2013
, “
Analytic Hierarchy Process Selection for Batteries Storage Technologies
,”
International Conference on Electrical Engineering and Software Applications
, Hammamet, Tunisia, Mar. 21–23, pp.
1
6
.
15.
Williamson
,
S. S.
,
Khaligh
,
A.
,
Oh
,
S. C.
, and
Emadi
,
A.
,
2005
, “
Impact of Energy Storage Device Selection on the Overall Drive Train Efficiency and Performance of Heavy-Duty Hybrid Vehicles
,”
IEEE
Vehicle Power and Propulsion Conference, Chicago, IL, Sept. 7, pp.
381
390
.
16.
Mazloum
,
Y.
,
Sayah
,
H.
, and
Nemer
,
M.
,
2016
, “
Static and Dynamic Modeling Comparison of an Adiabatic Compressed Air Energy Storage System
,”
J. Energy Resour. Technol.
,
138
(
6
), p.
062001
.
17.
Zhaobin
,
D. U.
,
Guiping
,
D.
,
Yunhua
,
X.
,
Wu
,
G.
, and
Cao
,
Q.
,
2013
, “
Selection of Energy Storage Battery of Mobile Large-Capacity Power Source or Power Supply Ensuring Users
,”
Mech. Electr. Eng. Technol.
,
42
, pp.
47
50
.
18.
Zhu
,
Y.
,
Wang
,
T.
, and
Tian
,
J.
,
2007
, “
Means Selection and Capacity Configuration of Energy Storage
,”
International Conference on Sustainable Power Generation and Supply
, Nanjing, China, Apr. 6–7, pp.
1
4
.
19.
Tarrad
,
A. H.
,
2017
, “
A Perspective Evaluation Methodology for Economic Feasibility of Low Temperature Sustainable Energy Source in Heating Mode Technology
,”
J. Energy Resour. Technol.
,
140
(
2
), p.
020902
.
20.
Sciacovelli
,
A.
,
Smith
,
D.
,
Navarro
,
M. E.
,
Vecchi
,
A.
,
Peng
,
X.
,
Li
,
Y.
,
Radcliffe
,
J.
, and
Ding
,
Y.
,
2017
, “
Performance Analysis and Detailed Experimental Results of the First Liquid Air Energy Storage Plant in the World
,”
J. Energy Resour. Technol.
,
140
(
2
), p.
020908
.
21.
Barnes
,
A. K.
,
Balda
,
J. C.
,
Geurin
,
S. O.
, and
Mejia
,
E. A.
,
2011
, “
Optimal Battery Chemistry, Capacity Selection Charge/Discharge Schedule and Lifetime of Energy Storage Under Time-of-Use Pricing
,” 2nd
IEEE PES
International Conference and Exhibition on Innovative Smart Grid Technologies, Manchester, UK, Dec. 5–7, pp.
1
7
.
22.
Koytsoumpa
,
E.-I.
,
Bergins
,
C.
,
Buddenberg
,
T.
,
Wu
,
S.
,
Sigurbj€ornsson
,
O.
,
Tran
,
K. C.
, and
Kakaras
,
E.
,
2016
, “
The Challenge of Energy Storage in Europe: Focus on Power to Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042002
.
23.
Swierczynski
,
M.
,
Stroe
,
D. S.
,
Stan
,
A. I.
,
Teodorescu
,
R.
, and
Sauer
,
D. U.
,
2014
, “
Selection and Performance-Degradation Modeling of LiMO2/Li4Ti5O12 and LiFePO4/C Battery Cells as Suitable Energy Storage Systems for Grid Integration With Wind Power Plants: An Example for the Primary Frequency Regulation Service
,”
IEEE Trans. Sustainable Energy
,
5
(
1
), pp.
90
101
.
24.
Angerer
,
M.
,
Djukow
,
M.
,
Riedl
,
K.
,
Gleis
,
S.
, and
Spliethoff
,
H.
,
2018
, “
Simulation of Cogeneration-Combined Cycle Plant Flexibilization by Thermochemical Energy Storage
,”
J. Energy Resour. Technol
,
140
(
2
), p.
020909
.
25.
Karasu
,
H.
, and
Dincer
,
I.
,
2018
, “
Analysis and Efficiency Assessment of Direct Conversion of Wind Energy Into Heat Using Electromagnetic Induction and Thermal Energy Storage
,”
J. Energy Resour. Technol
,
140
(
7
), p.
071201
.
26.
Mahlia
,
T. M. I.
,
Saktisahdan
,
T. J.
,
Jennifer
,
A.
,
Hasan
,
M. H.
, and
Matseelar
,
H. S. C.
,
2014
, “
A Review of Available Methods and Developments in Energy Storage; Technology Update
,”
Renewable Sustainable Energy Rev.
,
33
, pp.
532
545
.
27.
Chan
,
C. W.
,
Ling-Chin
,
J.
, and
Roskilly
,
A. P.
,
2012
, “
Review of Chemical Heat Pumps, Thermodynamic Cycles, and Thermal Energy Storage Technologies for Poor Heat Utilization
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1257
1273
.
28.
Zhou
,
Z.
,
Benbouzid
,
M.
,
Charpentier
,
J. F.
,
Scuiller
,
F.
, and
Tang
,
T.
,
2012
, “
A Review of Energy Storage Technologies for Marine Current Energy Systems
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
390
400
.
29.
Tan
,
X.
,
Li
,
Q.
, and
Wang
,
H.
,
2012
, “
Advances and Trends in Energy Storage Technology in the Microgrid
,”
Electr. Power Energy Syst.
,
44
(
1
), pp.
179
191
.
30.
Suberu
,
M. Y.
,
Mustafa
,
M. W.
, and
Bashir
,
N.
,
2014
, “
Energy Storage Systems for Renewable Energy Power Sector Integration and Mitigation of Intermittency
,”
Renewable Sustainable Energy Rev.
,
35
, pp.
499
514
.
31.
Kousksou
,
T.
,
Bruel
,
P.
,
Jamil
,
A.
,
El Rafiki
,
T.
, and
Zeraouli
,
Y.
,
2013
, “
Energy Storage: Application and Challenges
,”
Sol. Energy Mater. Sol. Cells
,
120
, pp.
59
80
.
32.
Chen
,
H.
,
Cong
,
T. N.
,
Yang
,
W.
,
Tan
,
C.
,
Li
,
Y.
, and
Ding
,
Y.
,
2009
, “
Progress in Electrical Energy Storage System: A Critical Review
,”
Prog. Nat. Sci.
,
19
(
3
), pp.
291
312
.
33.
Hasan
,
N. S.
,
Hassan
,
M. Y.
,
Majid
,
M. S.
, and
Rahman
,
H. A.
,
2013
, “
Review of Storage Schemes for Wind Energy Systems
,”
Renewable Sustainable Energy Rev.
,
21
, pp.
237
247
.
34.
Roy
,
B. P. U.
, and
Rengarajan
,
N.
,
2016
, “
Feasibility Study of an Energy Storage System for Distributed Generation System in Islanding Mode
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
011901
.
35.
Romero
,
A.
,
Carvalho
,
M.
, and
Millar
,
D. L.
,
2016
, “
Optimal Design and Control of Wind-Diesel Hybrid Energy Systems for Remote Arctic Mines
,”
J. Energy Resour. Technol.
,
138
(
6
), p.
062004
.
36.
Al-Hadban
,
Y.
,
Sreekanth
,
K. J.
,
Al-Taqi
,
H.
, and
Alasseri
,
R.
,
2017
, “
Implementation of Energy Efficiency Strategies in Cooling Towers—A Techno-Economic Analysis
,”
J. Energy Resour. Technol.
,
140
(
1
), p.
012001
.
37.
Jafek
,
A.
, and
Salmon
,
J. L.
,
2017
, “
A Systems Engineering Approach to Harnessing Human Energy in Public Places: A Feasibility Study
,”
J. Energy Resour. Technol.
,
139
(
4
), p.
041201
.
38.
Benato
,
A.
, and
Stoppato
,
A.
,
2017
, “
Energy and Cost Analysis of a New Packed Bed Pumped Thermal Electricity Storage Unit
,”
J. Energy Resour. Technol.
,
140
(
2
), p.
020904
.
39.
Ma
,
T.
,
Yang
,
H.
, and
Lu
,
L.
,
2014
, “
A Feasibility Study of a Stand-Alone Hybrid Solar–Wind–Battery System for a Remote Island
,”
Appl. Energy
,
121
, pp.
149
158
.
40.
Kaldellis
,
J. K.
,
Zafirakis
,
D.
, and
Kavadias
,
K.
,
2009
, “
Techno-Economic Comparison of Energy Storage Systems for Island Autonomous Electrical Networks
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
378
392
.
41.
Kaldellis
,
J. K.
,
Zafirakis
,
D.
, and
Kondili
,
E.
,
2010
, “
Optimum Sizing of Photovoltaic-Energy Storage Systems for Autonomous Small Islands
,”
Electr. Power Energy Syst.
,
32
(
1
), pp.
24
36
.
42.
Cho
,
J.
,
Jeong
,
S.
, and
Kim
,
Y.
,
2015
, “
Commercial and Research Battery Technologies for Electrical Energy Storage Applications
,”
Prog. Energy Combust. Sci.
,
48
, pp.
84
101
.
43.
Ma
,
T.
,
Yang
,
H.
, and
Peng
,
J.
,
2015
, “
Pumped Storage-Based Standalone Photovoltaic Power Generation System: Modeling and Techno-Economic Optimization
,”
Appl. Energy
,
137
, pp.
649
659
.
44.
Evans
,
A.
,
Strezov
,
V.
, and
Evans
,
T. J.
,
2012
, “
Assessment of Utility Energy Storage Options for Increased Renewable Energy Penetration. Centre for Low Carbon Futures
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
4141
4147
.
45.
Jim
,
E.
, and
Garth
,
C.
,
2010
, “
Energy Storage for the Electricity Grid: Benefits and Markets Potential Assessment Guide
,” A Study for the U.S. DOE Energy Storage Systems Program, Sandia National Laboratories, California, Sandia Report No.
2010-0815
.https://www.sandia.gov/ess-ssl/publications/SAND2010-0815.pdf
You do not currently have access to this content.