Radial jet drilling (RJD) technology is an effective method to enhance oil and gas recovery by penetrating the near-wellbore damage zone, and increasing the drainage radius greatly. Recently, it is identified as a potential technology to develop the geothermal energy. But the extension ability, one of the most critical issues of the RJD, is limited. Because only high pressure flexible hose (HPFH), which is hard to be fed in and subjected to greater resistance by the diverter, can be used as the drill stem to turn from vertical to horizontal in the casing. In this paper, an innovative method to feed in the HPFH by the drag force generated by high velocity flow in narrow annulus is proposed. The drag force model is built, validated, and modified by theoretical and experimental ways. Results show that the resulting drag force, which is equivalent to the self-propelled force, can easily achieve and feed in the HPFH. There is a power law relationship between the drag force and the average velocity; the drag force increases linearly with the length of the narrow annulus. Higher average velocity and 1–1.5 m annulus length are recommended. According to force analysis, the extension ability of the RJD can be doubled theoretically by this method. The results of this paper will greatly promote the development of RJD technology.

References

References
1.
Stopa
,
J.
, and
Nawrat
,
S.
,
2012
, “
Computer Modeling of Coal Bed Methane Recovery in Coal Mines
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032804
.
2.
Wang
,
L.
,
Wang
,
S.
, and
Zhang
,
R.
,
2017
, “
Review of Multi-Scale and Multi-Physical Simulation Technologies for Shale and Tight Gas Reservoir
,”
J. Natural Gas Sci. Eng.
,
37
, pp.
560
578
.
3.
Rui
,
Z.
,
Wang
,
X.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213C
, pp.
76
91
.
4.
Mohamed
,
I.
,
He
,
J.
, and
Nasr-EI-Din
,
H.
,
2013
, “
Experimental Analysis of CO2 Injection on Permeability of Vuggy Carbonate Aquifers
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013301
.
5.
Osholake
,
T.
,
Wang
,
J.
, and
Ertekin
,
T.
,
2013
, “
Factors Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013402
.
6.
Ji
,
W.
,
Song
,
U.
,
Meng
,
M.
, and
Huang
,
H.
,
2017
, “
Pore Characterization of Isolated Organic Matter From High Matured Gas Shale Reservoir
,”
Int. J. Coal Geology
,
174
, pp.
31
40
.
7.
Rui
,
Z.
,
Lu
,
J.
,
Zhang
,
Z.
,
Guo
,
R.
,
Ling
,
K.
,
Zhang
,
R.
, and
Patil
,
S.
,
2017
, “
A Quantitative Oil and Gas Reservoir Evaluation System for Development
,”
J. Natural Gas Sci. Eng.
,
42
, pp.
31
39
.
8.
Cui
,
K.
,
Qian
,
Y.
,
Jeon
,
I.
,
Anisimonv
,
A.
,
Matsuo
,
Y.
,
Kauppinen
,
I. E.
, and
Maruyama
,
S.
,
2017
, “
Scalable and Solid-State Redox Functionalization of Transparent Single-Walled Carbon Nanotube Films for Highly Efficient and Stable Solar Cells
,”
Adv. Energy Mater.
,
7
(
18
), p.
1700449
.
9.
Sun
,
J.
,
Gamboa
,
E.
, and
Schechter
,
D.
,
2016
, “
An Integrated Workflow for Characterization and Simulation of Complex Fracture Networks Utilizing Microseismic and Horizontal Core Data
,”
J. Natural Gas Sci. Eng.
,
34
, pp.
1347
1360
.
10.
Guo
,
T.
,
Li
,
Y.
,
Ding
,
Y.
,
Qu
,
Z.
, and
Gai
,
N.
,
2017
, “
Evaluation of Acid Fracturing Treatments in Shale Formation
,”
Energy Fuel
,
31
(
10
), pp.
10479
10489
.
11.
Feng
,
Y.
,
Jones
,
J. F.
, and
Gray
,
K. E.
,
2016
, “
A Review on Fracture-Initiation and-Propagation Pressures for Lost Circulation and Wellbore Strengthening
,”
SPE Drill. Completion
,
31
(
02
), pp.
134
144
.
12.
Feng
,
Y.
, and
Gray
,
K. E.
,
2016
, “
A Parametric Study for Wellbore Strengthening
,”
J. Natural Gas Sci. Eng.
,
30
, pp.
350
363
.
13.
Feng
,
Y.
, and
Gray
,
K. E.
,
2016
, “
A Fracture-Mechanics-Based Model for Wellbore Strengthening Applications
,”
J. Natural Gas Sci. Eng.
,
29
, pp.
392
400
.
14.
Zeng
,
J.
,
Wang
,
X.
,
Guo
,
J.
, and
Zeng
,
F.
,
2017
, “
Composite Linear Flow Model for Multi-Fractured Horizontal Wells in Heterogeneous Shale Reservoir
,”
J. Natural Gas Sci. Eng.
,
38
, pp.
527
548
.
15.
Li
,
Y.
,
Deng
,
J. G.
, and
Liu
,
W.
,
2017
, “
Modeling Hydraulic Fracture Propagation Using Cohesive Zone Model Equipped With Frictional Contact Capability
,”
Comput. Geotechnics
,
91
, pp.
58
70
.
16.
Zhu
,
H. Y.
,
Guo
,
J. C.
,
Zhao
,
X.
,
Lu
,
Q.
, and
Luo
,
B.
,
2014
, “
Hydraulic Fracture Initiation Pressure of Anisotropic Shale Gas Reservoirs
,”
Geomech. Eng.
,
7
(
4
), pp.
403
430
.
17.
Wang
,
L.
,
Wang
,
X.
,
Ding
,
X.
,
Zhang
,
L.
, and
Li
,
C.
,
2012
, “
Rate Decline Curves Analysis of a Vertical Fractured Well With Fracture Face Damage
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032803
.
18.
Sedaghat
,
M.
,
Ghazanfari
,
M.
,
Parvazdavani
,
M.
, and
Morshedi
,
S.
,
2013
, “
Experimental Investigation of Microscopic/Macroscopic Efficiency of Polymer Flooding in Fractured Heavy Oil Five-Spot Systems
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032901
.
19.
Rui
,
Z.
,
Guo
,
T.
,
Feng
,
Q.
,
Qu
,
Z.
,
Qi
,
N.
, and
Gong
,
F.
,
2018
, “
Influence of Gravel on the Propagation Pattern of Hydraulic Fracture in the Glutenite Reservoir
,”
J. Pet. Sci. Eng.
,
165
, pp.
627
639
.
20.
Rui
,
Z.
,
Peng
,
F.
,
Chang
,
H.
,
Ling
,
K.
,
Chen
,
G.
, and
Zhou
,
X.
,
2017
, “
Investigation Into the Performance of Oil and Gas Projects
,”
J. Natural Gas Sci. Eng.
,
38
, pp.
12
20
.
21.
Rui
,
Z.
,
Li
,
C.
,
Peng
,
P.
,
Ling
,
K.
,
Chen
,
G.
,
Zhou
,
X.
, and
Chang
,
H.
,
2017
, “
Development of Industry Performance Metrics for Offshore Oil and Gas Project
,”
J. Natural Gas Sci. Eng.
,
39
, pp.
44
53
.
22.
Kamel
,
A. H.
,
2017
, “
RJD: A Cost Effective Frackless Solution for Production Enhancement in Marginal Fields
,”
SPE Eastern Regional Meeting
, Canton, OH, Sept. 13–15,
SPE
Paper No. SPE-184053-MS.
23.
Dickinson
,
W.
, and
Dickinson
,
R. W.
,
1985
, “
Horizontal Radial Drilling System
,”
SPE California Regional Meeting
, Bakersfield, CA, Mar. 27–29,
SPE
Paper No. SPE-13949-MS.
24.
Dickinson
,
W.
,
Anderson
,
R. R.
, and
Dickinson
,
R. W.
,
1989
, “
The Ultrashort-Radius Radial System
,”
SPE Drill. Eng.
,
4
(
3
), pp.
247
254
.
25.
Carl
,
W. L.
,
1993
, “Method of and Apparatus for Horizontal Well Drilling,” US Patent No.
5,853,056
.https://patents.google.com/patent/US5853056
26.
Dickinson
,
W.
,
Dykstra
,
H.
,
Nees
,
J. M.
, and
Dickinson
,
E.
,
1992
, “
The Ultrashort Radius Radial System Applied to Thermal Recovery of Heavy Oil
,”
SPE Western Regional Meeting
, Bakersfield, CA, Mar. 30–Apr. 1,
SPE
Paper No. SPE-24087-MS.
27.
Li
,
Y.
,
Wang
,
C.
,
Shi
,
L.
, and
Guo
,
W.
,
2000
, “
Application and Development of Drilling and Completion of the Ultrashort-Radius Radial Well by High Pressure Jet Flow Techniques
,”
International Oil and Gas Conference and Exhibition in China
, Beijing, China, Nov. 7–10,
SPE
Paper No. SPE-64756-MS.
28.
Buset
,
P.
,
Riiber
,
M.
, and
Eek
,
A.
,
2001
, “
Jet Drilling Tool: Cost-Effective Lateral Drilling Technology for Enhanced Oil Recovery
,”
SPE/ICoTA Coiled Tubing Roundtable
, Houston, TX, Mar. 7–8,
SPE
Paper No. SPE-68504-MS.
29.
Cirigliano
,
R. A.
, and
Blacutt
,
J. F. T.
,
2007
, “
First Experience in the Application of Radial Perforation Technology in Deep Wells
,”
Latin American & Caribbean Petroleum Engineering Conference
, Buenos Aires, Argentina, Apr. 15–18,
SPE
Paper No. SPE-107182-MS.
30.
Abdel-Ghany
,
M. A.
,
Siso
,
S.
,
Hassan
,
A. M.
,
Pierpaolo
,
P.
, and
Roberto
,
C.
,
2011
, “
New Technology Application, Radial Drilling Petrobel, First Well in Egypt
,”
Offshore Mediterranean Conference
, Ravenna, Italy, Mar. 23–25, Paper No.
OMC-2011-163
.https://www.onepetro.org/conference-paper/OMC-2011-163
31.
Cinelli
,
S. D.
, and
Kamel
,
A. H.
,
2013
, “
Novel Technique to Drill Horizontal Laterals Revitalizes Aging Field
,”
SPE/IADC Drilling Conference
, Amsterdam, The Netherlands, Mar. 5–7,
SPE
Paper No. SPE-163405-MS.
32.
Zhang
,
Y.
,
Hao
,
Y.
, and
Samuel
,
R.
,
2013
, “
Analytical Model to Estimate the Drag Forces for Microhole Coiled Tubing Drilling
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
033101
.
33.
Li
,
J.
,
Li
,
G.
,
Huang
,
Z.
,
Song
,
X.
,
Yang
,
R.
, and
Peng
,
K.
,
2015
, “
The Self-Propelled Force Model of a Multi-Orifice Nozzle for Radial Jet Drilling
,”
J. Natural Gas Sci. Eng.
,
24
, pp.
441
448
.
34.
Fronk
,
B. M.
,
Neal
,
R.
, and
Garimella
,
S.
,
2010
, “
Evolution of the Transition to a World Driven by Renewable Energy
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021009
.
35.
Wong
,
K. V.
, and
Tan
,
N.
,
2015
, “
Feasibility of Using More Geothermal Energy to Generate Electricity
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
041201
.
36.
Li
,
M.
, and
Lior
,
N.
,
2015
, “
Analysis of Hydraulic Fracturing and Reservoir Performance in Enhanced Geothermal Systems
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p. 041203.
37.
Cui
,
G.
,
Ren
,
S.
,
Rui
,
Z.
,
Ezekiel
,
J.
,
Zhang
,
L.
, and
Wang
,
H.
,
2017
, “
The Influence of Complicated Fluid-Rock Interactions on the Geothermal Exploitation in the CO2 Plume Geothermal System
,”
Appl. Energy
, in press.
38.
Nair
,
R.
,
Peters
,
E.
,
Šliaupa
,
S.
,
Valickas
,
R.
, and
Petrauskas
,
S.
,
2017
, “
A Case Study of Radial Jetting Technology for Enhancing Geothermal Energy Systems at Klaipėda Geothermal Demonstration Plant
,”
42nd Workshop on Geothermal Reservoir Engineering Stanford University
, Stanford, CA, Feb. 13–15, Paper No.
SGP-TR-212
.https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2017/Nair.pdf
39.
Wang
,
B.
,
Li
,
G.
,
Huang
,
Z.
,
Li
,
J.
,
Zheng
,
D.
, and
Li
,
H.
,
2016
, “
Hydraulics Calculations and Field Application of Radial Jet Drilling
,”
SPE Drill. Completion
,
31
(
1
), pp.
71
81
.
40.
Wang
,
B.
,
Li
,
G.
,
Huang
,
Z.
,
Ma
,
T.
,
Zheng
,
D.
, and
Li
,
K.
,
2017
, “
Lab Testing and Finite Element Method Simulation of Hole Deflector Performance for Radial Jet Drilling
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032906
.
41.
Li
,
G.
,
Li
,
J.
,
Huang
,
Z.
,
Niu
,
J.
,
Song
,
X.
,
Xu
,
Z.
, and
Liu
,
X.
,
2015
, “
The Method to Feed in High Pressure Flexible Hose With the Drag Force Generated by High Velocity Flow in the Narrow Gap
,” China Patent No. 201510664563.5.
42.
Reed
,
T. D.
, and
Pilehvari
,
A. A.
,
1993
, “
A New Model for Laminar, Transitional, and Turbulent Flow of Drilling Muds
,” SPE Production Operations Symposium, Mar. 21–23, Oklahoma City, OK,
SPE
Paper No. SPE-25456-MS.
43.
Jones
,
O. C.
, Jr.
, and
Leung
,
J. C. M.
,
1981
, “
An Improvement in the Calculation of Turbulent Friction in Smooth Concentric Annuli
,”
ASME J. Fluids Eng.
,
103
(
4
), pp.
615
623
.
44.
Bourgoyne
,
A. T.
, Jr.,
Chenevert
,
M. R.
,
Millheim
,
K. K.
, and
Young
,
F. S.
, Jr.
, 1986,
Applied Drilling Engineering
, Society of Petroleum Engineers, Richardson, TX, p.
140
.
45.
Hanks
,
R. W.
,
1980
, “
Critical Reynolds Numbers, for Newtonian Flow in Concentric Annuli
,”
AlChE J.
,
26
(
1
), pp.
152
154
.
46.
Hanks
,
R. W.
, and
Peterson
,
J. M.
,
1982
, “
Complex Transitional Flows in Concentric Annuli
,”
AlChE J.
,
28
(
5
), pp.
800
806
.
47.
Churchill
,
S. W.
, and
Chan
,
C.
,
1995
, “
Turbulent Flow in Channels in Terms of Turbulent Shear and Normal Stresses
,”
AIChE J.
,
41
(
12
), pp.
2513
2521
.
48.
Rehme
,
K.
,
1974
, “
Turbulent Flow in Smooth Concentric Annuli With Small Radius Ratios
,”
J. Fluid Mech
,
64
(
2
), pp.
263
288
.
49.
Jonsson
,
V. K.
, and
Sparrow
,
E. M.
,
1966
, “
Experiments on Turbulent-Flow Phenomena in Eccentric Annular Ducts
,”
J. Fluid Mech
,
25
(
1
), pp.
65
86
.
50.
Saasen
,
A.
,
2014
, “
Annular Frictional Pressure Losses During Drilling-Predicting the Effect of Drillstring Rotation
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
034501
.
You do not currently have access to this content.