Exploring and developing oil and gas in deepwater field is an important trend of the oil and gas industry. Development of deepwater oil and gas fields from a platform always requires a number of directional wells or extended reach wells targeting to different depth of water in various azimuth. Drilling of these wells is mostly associated with a series of wellbore instability problems that are not encountered in onshore or shallow water drilling. In the past decades, a number of studies on wellbore stability have been conducted. However, few of the models are specific for wellbore stability of the inclined deepwater wellbores. In this work, a comprehensive wellbore stability model considering poroelastic and thermal effects for inclined wellbores in deepwater drilling is developed. The numerical method of the model is also presented. The study shows that for a strike-slip stress regime, the wellbore with a low inclination poses more risk of wellbore instability than the wellbore with a high inclination. It also shows that cooling the wellbore will stabilize the wellbore while excessive cooling could cause wellbore fracturing, and the poroelastic effect could narrow the safe mud weight window. The highest wellbore collapse pressure gradients at all of the analyzed directions are obtained when poroelastic effect is taken into account meanwhile the lowest wellbore fracture pressure gradients at all of the analyzed directions are obtained when both of poroelastic effect and thermal effect are taken into account. For safe drilling in deepwater, both of thermal and poroelastic effects are preferably considered to estimate wellbore stability. The model provides a practical tool to predict the stability of inclined wellbores in deepwater drilling.

References

References
1.
Zhang
,
Q.
,
Wang
,
Z.
,
Wang
,
X.
, and
Yang
,
J.
,
2014
, “
A New Comprehensive Model for Predicting the Pressure Drop of Flow in the Horizontal Wellbore
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042903
.
2.
Rui
,
Z.
,
Wang
,
X.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213
, pp.
76
91
.
3.
Cui
,
K.
,
Qian
,
Y.
,
Jeon
,
I.
,
Anisimonv
,
A.
,
Matsuo
,
Y.
,
Kauppinen
,
I. E.
, and
Maruyama
,
S.
,
2017
, “
Scalable and Solid-State Redox Functionalization of Transparent Single-Walled Carbon Nanotube Films for Highly Efficient and Stable Solar Cells
,”
Adv. Energy Mater.
,
7
(
18
), p.
1700449
.
4.
Wendler
,
C.
, and
Mansilla
,
C.
,
2003
, “
Deep Water Well Testing for Heavy- and Low-Pour-Point Oils-Issues, Options, Successful Methodology: Case Histories
,”
Offshore Technology Conference
, Houston, TX, May 5–8, Paper No.
OTC-15279-MS
.
5.
Chen
,
X.
,
Gao
,
D.
, and
Guo
,
B.
,
2016
, “
A Method for Optimizing Jet-Mill-Bit Hydraulics in Horizontal Drilling
,”
SPE J.
,
21
(
2
), pp.
416
422
.
6.
Chen
,
X.
, and
Gao
,
D.
,
2018
, “
The Maximum-Allowable Well Depth While Performing Ultra-Extended-Reach Drilling From Shallow Water to Deepwater Target
,”
SPE J.
,
23
(
1
), pp.
224
236
.
7.
Chen
,
X.
,
Gao
,
D.
, and
Guo
,
B.
,
2016
, “
Optimal Design of Jet Mill Bit for Jet Comminuting Cuttings in Horizontal Gas Drilling Hard Formations
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
587
593
.
8.
Rui
,
Z.
,
Li
,
C.
,
Peng
,
P.
,
Ling
,
K.
,
Chen
,
G.
,
Zhou
,
X.
, and
Chang
,
H.
,
2017
, “
Development of Industry Performance Metrics for Offshore Oil and Gas Project
,”
J. Nat. Gas Sci. Eng.
,
39
, pp.
44
53
.
9.
Chen
,
X.
, and
Gao
,
D.
,
2016
, “
Mega-Extended-Reach Drilling to Deepwater Target: What is the Well's Maximum Allowable Measured Depth While Drilling?
,”
Abu Dhabi International Petroleum Exhibition and Conference
, Abu Dhabi, UAE, Nov. 7–10,
SPE
Paper No. SPE-183025-MS.
10.
Chen
,
X.
,
Gao
,
D.
,
Guo
,
B.
, and
Feng
,
Y.
,
2016
, “
Real-Time Optimization of Drilling Parameters Based on Mechanical Specific Energy for Rotating Drilling With Positive Displacement Motor in the Hard Formation
,”
J. Nat. Gas Sci. Eng.
,
35
(Pt. A), pp.
686
694
.
11.
Dong
,
T.
,
2015
, “
Thermodynamic Analysis of Thermal Responses in Horizontal Wellbores
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032903
.
12.
Liu
,
T.
,
Zhong
,
H. Q.
, and
Li
,
Y. C.
,
2014
, “
Transient Simulation of Wellbore Pressure and Temperature During Gas-Well Testing
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
032902
.
13.
Maury
,
V.
, and
Guenot
,
A.
,
1995
, “
Practical Advantages of Mud Cooling Systems for Drilling
,”
SPE Drill. Completion
,
10
(
1
), pp.
42
48
.
14.
Ye
,
Z.
,
Fan, H.
,
Liu, G.
, and
Wang, Y.
,
2012
, “
Estimating Formation Pore Pressure in Tectonic Compression Zones
,”
Pet Sci. Technol.
,
30
(
8
), pp.
766
774
.
15.
Ye
,
Z.
,
Fan, H.
,
Cai, J.
,
Ji, R.
,
Li, C.
, and
Liu, G.
,
2012
, “
Investigation and Application of a Discrimination Method for Abnormal High Formation Pressure Forming Mechanism
,”
J. China Univ. Pet.
,
36
(
3
), pp.
102
107
.
16.
Ezeakacha
,
C. P.
,
Salehi
,
S.
, and
Hayatdavoudi
,
A.
,
2017
, “
Experimental Study of Drilling Fluid's Filtration and Mud Cake Evolution in Sandstone Formations
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022912
.
17.
Mahmoud
,
M.
,
Bageri
,
B. S.
,
Elkatatny
,
S.
, and
Al-Mutairi
,
S. H.
,
2017
, “
Modeling of Filter Cake Composition in Maximum Reservoir Contact and Extended Reach Horizontal Wells in Sandstone Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032904
.
18.
Chuanliang
,
Y.
,
Jingen
,
D.
,
Xiangdong
,
L.
,
Xiaorong
,
L.
, and
Yongcun
,
F.
,
2015
, “
Borehole Stability Analysis in Deepwater Shallow Sediments
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012901
.
19.
Salehi
,
S.
, and
Kiran
,
R.
,
2016
, “
Integrated Experimental and Analytical Wellbore Strengthening Solutions by Mud Plastering Effects
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032904
.
20.
Kiran
,
R.
, and
Salehi
,
S.
,
2017
, “
Thermoporoelastic Modeling of Time-Dependent Wellbore Strengthening and Casing Smear
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022903
.
21.
Contreras
,
O.
,
Alsaba
,
M.
,
Hareland
,
G.
,
Husein
,
M.
, and
Nygaard
,
R.
,
2016
, “
Effect on Fracture Pressure by Adding Iron-Based and Calcium-Based Nanoparticles to a Nonaqueous Drilling Fluid for Permeable Formations
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032906
.
22.
Bradley
,
W. B.
,
1979
, “
Failure of Inclined Boreholes
,”
ASME J. Energy Resour. Technol.
,
101
(
4
), pp.
232
239
.
23.
Aadnoy
,
B. S.
, and
Chenevert
,
M. E.
,
1987
, “
Stability of Highly Inclined Boreholes (Includes Associated Papers 18596 and 18736)
,”
SPE Drill. Eng.
,
2
(
4
), pp.
364
374
.
24.
Roshan
,
H.
, and
Fahad
,
M.
,
2012
, “
Chemo-Poroplastic Analysis of a Borehole Drilled in a Naturally Fractured Chemically Active Formation
,”
Int. J. Rock Mech. Min. Sci.
,
52
, pp.
82
91
.
25.
Rui
,
Z.
,
Lu
,
J.
,
Zhang
,
Z.
,
Guo
,
R.
,
Ling
,
K.
,
Zhang
,
R.
, and
Patil
,
S.
,
2017
, “
A Quantitative Oil and Gas Reservoir Evaluation System for Development
,”
J. Nat. Gas Sci. Eng.
,
42
, pp.
31
39
.
26.
Yuan
,
J. L.
,
Deng
,
J. G.
,
Tan
,
Q.
,
Yu
,
B. H.
, and
Jin
,
X. C.
,
2013
, “
Borehole Stability Analysis of Horizontal Drilling in Shale Gas Reservoirs
,”
Rock Mech. Rock Eng.
,
46
(
5
), pp.
1157
1164
.
27.
Chen
,
P.
,
Ma
,
T. S.
, and
Xia
,
H. Q.
,
2014
, “
A Collapse Pressure Prediction Model of Horizontal Shale Gas Wells With Multiple Weak Planes
,”
Nat. Gas. Ind.
,
34
(
1
), pp.
87
93
.
28.
Wang
,
Z.
, and
Chen
,
Y.
,
2018
, “
Finite Element Analysis of Thermally Induced Stresses in the Near-Wellbore Region During Invasion of Mud Into Fractures
,”
ASME J. Energy Resour. Technol.
,
140
(5), p. 052909.
29.
Cao
,
C.
,
Pu
,
X.
,
Zhao
,
Z.
,
Wang
,
G.
, and
Du
,
H.
,
2018
, “
Experimental Investigation on Wellbore Strengthening Based on a Hydraulic Fracturing Apparatus
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052902
.
30.
Kurashige
,
M.
,
1989
, “
A Thermoelastic Theory of Fluid-Filled Porous Materials
,”
Int. J. Solids Struct.
,
25
(
9
), pp.
1039
1052
.
31.
Rahman
,
M. K.
,
Chen
,
Z.
, and
Rahman
,
S. S.
,
2003
, “
Modeling Time-Dependent Pore Pressure Due to Capillary and Chemical Potential Effects and Resulting Wellbore Stability in Shales
,”
ASME J. Energy Resour. Technol.
,
125
(
3
), pp.
169
176
.
32.
Rui
,
Z.
,
Peng
,
F.
,
Chang
,
H.
,
Ling
,
K.
,
Chen
,
G.
, and
Zhou
,
X.
,
2017
, “
Investigation Into the Performance of Oil and Gas Projects
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
12
20
.
33.
Wang
,
Y.
, and
Dusseault
,
M. B.
,
1995
, “
Response of a Circular Opening in a Friable Low-Permeability Medium to Temperature and Pore Pressure Changes
,”
Int. J. Numer. Anal. Methods Geomech.
,
19
(
3
), pp.
157
179
.
34.
Chen
,
G.
,
2001
, “
A Study of Wellbore Stability in Shales Including Poroelastic, Chemical, and Thermal Effects
,”
Ph.D. dissertation
, The University of Texas at Austin, Austin, TX.https://repositories.lib.utexas.edu/handle/2152/10240
35.
Chen
,
G.
,
Chenevert
,
M. E.
,
Sharma
,
M. M.
, and
Yu
,
M.
,
2003
, “
A Study of Wellbore Stability in Shales Including Poroelastic, Chemical, and Thermal Effects
,”
J. Pet. Sci. Eng.
,
38
(
3–4
), pp.
167
176
.
36.
Chen
,
G.
, and
Ewy
,
R. T.
,
2005
, “
Thermoporoelastic Effect on Wellbore Stability
,”
SPE J.
,
10
(
2
), pp.
121
129
.
37.
Yu
,
M.
,
2002
, “
Chemical and Thermal Effects on Wellbore Stability of Shale Formations
,”
Ph.D. dissertation
, The University of Texas at Austin, Austin, TX.https://repositories.lib.utexas.edu/handle/2152/1078
38.
Kang
,
Y.
,
Yu
,
M.
,
Miska
,
S. Z.
, and
Takach
,
N.
,
2009
, “
Wellbore Stability: A Critical Review and Introduction to DEM
,”
SPE Annual Technical Conference and Exhibition
, New Orleans, LA, Oct. 4–7,
SPE
Paper No. SPE-124669-MS.
39.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Lu
,
J.
,
Chen
,
G.
,
Ling
,
K.
, and
Patil
,
S.
,
2018
, “
A Quantitative Framework for Evaluating Unconventional Well Development
,”
J. Pet. Sci. Eng.
,
166
, pp. 900–905.
40.
Yan
,
C.
,
Deng
,
J.
,
Yu
,
B.
,
Li
,
W.
,
Chen
,
Z.
,
Hu
,
L.
, and
Li
,
Y.
,
2014
, “
Borehole Stability in High-Temperature Formations
,”
Rock Mech. Rock Eng.
,
47
(
6
), pp.
2199
2209
.
41.
Dokhani
,
V.
,
Yu
,
M.
,
Miska
,
S. Z.
, and
Bloys
,
J.
,
2015
, “
The Effects of Anisotropic Transport Coefficients on Pore Pressure in Shale Formations
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032905
.
42.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
2nd ed.
,
Clarendon Press
,
Oxford
, NY.
43.
Cui
,
G.
,
Ren
,
S.
,
Ezekiel
,
J.
,
Zhang
,
L.
, and
Wang
,
H.
,
2018
, “
The Influence of Complicated Fluid-Rock Interactions on the Geothermal Exploitation in the CO2 Plume Geothermal System
,”
Appl. Energy
, in press.
44.
Fjaer
,
E.
,
Holt
,
R. M.
,
Horsrud
,
P.
,
Raaen
,
A. M.
, and
Risnes
,
R.
,
1992
,
Petroleum Related Rock Mechanics, Developments in Petroleum Science
, Vol.
33
,
Elsevier Science Publishers
, Kidlington, UK.
45.
Zhang
,
J.
,
2002
, “
Dual-Porosity Approach to Wellbore Stability in Naturally Fractured Reservoirs
,”
Ph.D. dissertation
, University of Oklahoma, Norman, OK.https://shareok.org/handle/11244/465
46.
Ekbote
,
S. M.
,
2002
, “
Anisotropic Poromechanics of the Wellbore Coupled With Thermal and Chemical Gradients
,”
Ph.D. dissertation
, University of Oklahoma, Norman, OK.https://shareok.org/handle/11244/522
47.
Zhou
,
S.
,
Hillis
,
R.
, and
Sandiford
,
M.
,
1994
, “
A Study of the Design of Inclined Wellbores With Regard to Both Mechanical Stability and Fracture Intersection, and Its Application to the Australian North West Shelf
,”
J. Appl. Geophys.
,
32
(
4
), pp.
293
304
.
48.
Chen
,
M.
,
Jin
,
Y.
, and
Zhang
,
G. Q.
,
2008
,
Petroleum-Related Rock Mechanics
,
Beijing Science Press
, Beijing, China.
49.
Fjær
,
E.
,
Holt
,
R. M.
,
Horsrud
,
P.
,
Raaen
,
A. M.
, and
Risnes
,
R.
,
2008
,
Petroleum Related Rock Mechanics
,
2nd ed.
,
Elsevier
,
Amsterdam, The Netherlands
.
50.
Guo
,
T.
,
Li
,
Y.
,
Ding
,
Y.
,
Qu
,
Z.
, and
Gai
,
N.
,
2017
, “
Evaluation of Acid Fracturing Treatments in Shale Formation
,”
Energy Fuel
,
31
(
10
), pp.
10479
10489
.
51.
Zhang
,
S.
,
Xian
,
X.
,
Zhou
,
J.
,
Liu
,
G.
,
Guo
,
Y.
,
Zhao
,
Y.
, and
Lu
,
Z.
,
2018
, “
Experimental Study of the Pore Structure Characterization in Shale With Different Particle Size
,”
ASME J. Energy Resour. Technol.
,
140
(5), p. 054502.
52.
Deng, J.
,
Cheng, Y.
, and
Chen, M.
,
2008
,
Wellbore Stability Prediction Technique
,
Petroleum Industry Press
, Beijing, China.
53.
Deng, J.
, and
Zhang, H.
,
1998
,
Wellbore Instability Mechanism in Drilling Engineering
,
Petroleum Industry Press
, Beijing, China.
54.
Al-Ajmi
,
A. M.
, and
Zimmerman
,
R. W.
,
2005
, “
Relation Between the Mogi and the Coulomb Failure Criteria
,”
Int. J. Rock Mech. Min. Sci.
,
42
(
3
), pp.
431
439
.
55.
Al-Ajmi
,
A. M.
, and
Zimmerman
,
R. W.
,
2006
, “
Stability Analysis of Vertical Boreholes Using the Mogi-Coulomb Failure Criterion
,”
Int. J. Rock Mech. Min. Sci.
,
43
(
8
), pp.
1200
1211
.
56.
Rui
,
Z.
,
Guo
,
T.
,
Feng
,
Q.
,
Qu
,
Z.
,
Qi
,
N.
, and
Gong
,
F.
,
2018
, “
Influence of Gravel on the Propagation Pattern of Hydraulic Fracture in the Glutenite Reservoir
,”
J. Pet. Sci. Eng.
,
165
, pp.
627
639
.
57.
Guo
,
J.
,
Luo
,
B.
,
Lu
,
C.
,
Lai
,
J.
, and
Ren
,
J.
,
2017
, “
Numerical Investigation of Hydraulic Fracture Propagation in a Layered Reservoir Using the Cohesive Zone Method
,”
Eng. Fract. Mech.
,
186
, pp.
195
207
.
58.
Taleghani
,
A. D.
, and
Klimenko
,
D.
,
2015
, “
An Analytical Solution for Microannulus Cracks Developed Around a Wellbore
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062901
.
59.
Zeng
,
J.
,
Wang
,
X.
,
Guo
,
J.
, and
Zeng
,
F.
,
2017
, “
Composite Linear Flow Model for Multi-Fractured Horizontal Wells in Heterogeneous Shale Reservoir
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
527
548
.
60.
Dokhani
,
V.
,
Yu
,
M.
,
Gao
,
C.
, and
Bloys
,
J.
,
2018
, “
Investigating the Relation Between Sorption Tendency and Hydraulic Properties of Shale Formations
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012902
.
You do not currently have access to this content.