Horizontal well drilling technology is widely used in the exploitation of petroleum and natural gas, shale gas, and geothermal resources. The temperature distribution of wellbore and surrounding formation has a significant influence on safe and fast drilling. This study aims to investigate the temperature distribution of horizontal wellbores during circulation by using transient temperature model. The transient temperature prediction model was established by the energy conservation law and solved by the relaxation iterative method. The validity of the model has been verified by the field data from the Tarim Oilfield. The calculation results showed that the highest temperature of the drilling fluid inside the drill string was at the bottomhole and the highest temperature of annulus drilling fluid was at some depth away from the bottomhole. Sensitivity analysis of various factors that affect the temperature distribution of annulus drilling fluid were carried out, including the circulation time, the flow rate, the density of drilling fluid, the inlet temperature, the vertical depth, the horizontal section length, and the geothermal gradient. It can be found that the vertical depth and the geothermal gradient have a significant influence on the bottomhole temperature, and inlet temperature plays a decisive influence on the outlet temperature. These findings can supply theoretical bases for the horizontal wellbore temperature distribution during drilling.

References

References
1.
Rassenfoss
,
S.
, and
Henni
,
A.
,
2015
, “
Low Oil Prices Make Innovation a Priority
,”
J. Pet. Technol.
,
67
(
2
), pp.
56
61
.
2.
Yuan
,
B.
,
Moghanloo
,
R. G.
, and
Shariff
,
E.
,
2016
, “
Integrated Investigation of Dynamic Drainage Volume and Inflow Performance Relationship (Transient IPR) to Optimize Multistage Fractured Horizontal Wells in Tight/Shale Formations
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052901
.
3.
Seales
,
M. B.
,
Ertekin
,
T.
, and
Wang
,
J. Y.
,
2017
, “
Recovery Efficiency in Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042901
.
4.
Cui
,
G.
,
Ren
,
S.
,
Zhang
,
L.
,
Ezekiel
,
J.
,
Enechukwu
,
C.
,
Wang
,
Y.
, and
Zhang
,
R.
,
2017
, “
Geothermal Exploitation From Hot Dry Rocks Via Recycling Heat Transmission Fluid in a Horizontal Well
,”
Energy
,
128
, pp.
366
377
.
5.
King
,
R. F.
, and
Morehouse
,
D.
,
1993
, “
Drilling Sideways—a Review of Horizontal Well Technology and Its Domestic Application
,” Energy Information Administration, Washington, DC, Technical Report No.
DOE/EIA/TR-0565
.
6.
Singh
,
R. S.
,
1991
, “
Horizontal Well Technology: Performance Evaluation and Technoeconomic Assessment
,” Middle East Oil Show, Bahrain, Nov. 16–19,
SPE
Paper No. SPE-21384-MS.
7.
Thakur
,
G. C.
,
1999
, “
Horizontal Well Technology-A Key to Improving Reserves
,”
J. Can. Pet. Technol.
,
38
(
10
), pp.
55
60
.
8.
Xiange
,
L.
,
Shangqi
,
L.
, and
Zhixiang
,
J.
,
1998
, “
Horizontal Well Technology in the Oilfield of China
,” SPE International Conference on Horizontal Well Technology, Calgary, Alberta, Canada, Nov. 1–4,
SPE
Paper No. SPE-50424-MS.
9.
Saavedra
,
N. F.
, and
Joshi
,
S. D.
,
2000
, “
Application of Horizontal Well Technology in Colombia
,”
SPE/CIM International Conference on Horizontal Well Technology
,” Calgary, AB, Canada, Nov. 6–8,
SPE
Paper No. SPE-65477-MS.
10.
Zhao
,
X.
,
Qiu
,
Z.
,
Wang
,
M.
,
Huang
,
W.
, and
Zhang
,
S.
,
2018
, “
Performance Evaluation of a Highly Inhibitive Water-Based Drilling Fluid for Ultralow Temperature Wells
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012906
.
11.
Adewole
,
J. K.
, and
Najimu
,
M. O.
,
2018
, “
A Study on the Effects of Date Pit-Based Additive on the Performance of Water-Based Drilling Fluid
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052903
.
12.
Salehi
,
S.
,
Khattak
,
M. J.
,
Ali
,
N.
,
Ezeakacha
,
C.
, and
Saleh
,
F. K.
,
2018
, “
Study and Use of Geopolymer Mixtures for Oil and Gas Well Cementing Applications
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012908
.
13.
Xiaoqing
,
W.
,
Shiying
,
L.
, and
Shuzhi
,
L.
,
1997
, “
A New Temperature Field and the Method for Designing Casing in Thermal Horizontal Well
,”
International Thermal Operations and Heavy Oil Symposium
, Bakersfield, CA, Feb. 10–12,
SPE
Paper No. SPE-37540-MS.
14.
García
,
A.
,
Santoyo
,
E.
,
Espinosa
,
G.
,
Hernández
,
I.
, and
Gutierrez
,
H.
,
1998
, “
Estimation of Temperatures in Geothermal Wells During Circulation and Shut-In in the Presence of Lost Circulation
,”
Transp. Porous Media
,
33
(
1/2
), pp.
103
127
.
15.
Gao
,
G.
, and
Jalali
,
Y.
,
2005
, “
Interpretation of Distributed Temperature Data During Injection Period in Horizontal Wells
,” SPE Annual Technical Conference and Exhibition
, Dallas, TX, Oct. 9–12,
SPE
Paper No. SPE-96260-MS.
16.
Pimenov
,
V.
,
Brown
,
G.
,
Tertychnyi
,
V.
,
Shandrygin
,
A.
, and
Popov
,
Y.
,
2005
, “
Injectivity Profiling in Horizontal Wells Through Distributed Temperature Monitoring
,” SPE Annual Technical Conference and Exhibition, Dallas, TX, Oct. 9–12,
SPE
Paper No. SPE-97023-MS.
17.
Yoshioka
,
K.
,
Zhu
,
D.
,
Hill
,
A. D.
,
Dawkrajai
,
P.
, and
Lake
,
L.
,
2007
, “
Prediction of Temperature Changes Caused by Water or Gas Entry Into a Horizontal Well
,”
SPE Prod. Oper.
,
22
(
4
), pp.
425
433
.
18.
Muradov
,
K. M.
, and
Davies
,
D. R.
,
2011
, “
Novel Analytical Methods of Temperature Interpretation in Horizontal Wells
,”
SPE J.
,
16
(
3
), pp.
637
647
.
19.
Tabatabaei
,
M.
,
Zhu
,
D.
, and
Hill
,
A. D.
,
2013
, “
Theoretical Basis for Interpretation of Temperature Data During Acidizing Treatment of Horizontal Wells
,”
SPE Prod. Oper.
,
28
(
2
), pp.
168
180
.
20.
Yoshida
,
N.
,
2013
, “
Temperature Prediction Model Horizontal Well With Multiple Fractures Shale Reservoir
,”
SPE Prod. Oper.
,
29
(
4
), pp.
261
273
.
21.
Emami-Meybodi
,
H.
,
Saripalli
,
H. K.
, and
Hassanzadeh
,
H.
,
2014
, “
Formation Heating by Steam Circulation in a Horizontal Wellbore
,”
Int. J. Heat Mass Transfer
,
78
, pp.
986
992
.
22.
Li
,
X.
, and
Zhu
,
D.
,
2016
, “
Temperature Behavior of Multi-Stage Fracture Treatments in Horizontal Wells
,” SPE Asia Pacific Hydraulic Fracturing Conference
, Beijing, China, Aug. 24–26,
SPE
Paper No. SPE-181876-MS.
23.
Raymond
,
L. R.
,
1969
, “
Temperature Distribution in a Circulating Drilling Fluid
,”
J. Pet. Technol.
,
21
(
3
), pp.
333
341
.
24.
Holmes
,
C. S.
, and
Swift
,
S. C.
,
1970
, “
Calculation of Circulating Mud Temperatures
,”
J. Pet. Technol.
,
22
(
6
), pp.
670
674
.
25.
Keller
,
H. H.
,
Couch
,
E. J.
, and
Berry
,
P. M.
,
1973
, “
Temperature Distribution in Circulating Mud Columns
,”
Soc. Pet. Eng. J.
,
13
(
1
), pp.
23
30
.
26.
Wooley
,
G. R.
,
1980
, “
Computing Downhole Temperatures in Circulation, Injection, and Production Wells
,”
J. Pet. Technol.
,
32
(
9
), pp.
1509
1522
.
27.
Marshall
,
D. W.
, and
Bentsen
,
R. G.
,
1982
, “
A Computer Model to Determine the Temperature Distributions in a Wellbore
,”
J. Can. Pet. Technol.
,
21
(
1
), pp.
63
75
.
28.
Kabir
,
C. S.
,
Hasan
,
A. R.
,
Kouba
,
G. E.
, and
Ameen
,
M.
,
1996
, “
Determining Circulating Fluid Temperature in Drilling, Workover, and Well Control Operations
,”
SPE Drill. Completion
,
11
(
2
), pp.
74
79
.
29.
Li
,
M.
,
Liu
,
G.
, and
Li
,
J.
,
2015
, “
Thermal Effect on Wellbore Stability During Drilling Operation With Long Horizontal Section
,”
J. Nat. Gas Sci. Eng.
,
23
, pp.
118
126
.
30.
Espinosa-Paredes
,
G.
,
Garcia
,
A.
,
Santoyo
,
E.
, and
Hernandez
,
I.
,
2001
, “
TEMLOPI/V. 2: A Computer Program for Estimation of Fully Transient Temperatures in Geothermal Wells During Circulation and Shut-In
,”
Comput. Geosci.
,
27
(
3
), pp.
327
344
.
31.
Zhichuan
,
S. X. G.
,
2011
, “
Full Transient Analysis of Heat Transfer During Drilling Fluid Circulation in Deep-Water Wells
,”
Acta Pet. Sin.
,
32
(
4
), pp.
704
708
.
32.
Kutlu
,
B.
,
Takach
,
N.
,
Ozbayoglu
,
E. M.
,
Miska
,
S. Z.
,
Yu
,
M.
, and
Mata
,
C.
,
2017
, “
Drilling Fluid Density and Hydraulic Drag Reduction With Glass Bubble Additives
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042904
.
33.
Kamel
,
M. A.
,
Elkatatny
,
S.
,
Mysorewala
,
M. F.
,
Al-Majed
,
A.
, and
Elshafei
,
M.
,
2018
, “
Adaptive and Real-Time Optimal Control of Stick–Slip and Bit Wear in Autonomous Rotary Steerable Drilling
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032908
.
34.
Yang
,
M.
,
Li
,
X.
,
Deng
,
J.
,
Meng
,
Y.
, and
Li
,
G.
,
2015
, “
Prediction of Wellbore and Formation Temperatures During Circulation and Shut-In Stages Under Kick Conditions
,”
Energy
,
91
, pp.
1018
1029
.
35.
Li
,
M.
,
Liu
,
G.
,
Li
,
J.
,
Zhang
,
T.
, and
He
,
M.
,
2015
, “
Thermal Performance Analysis of Drilling Horizontal Wells in High Temperature Formations
,”
Appl. Therm. Eng.
,
78
, pp.
217
227
.
36.
Hagoort
,
J.
,
2004
, “
Ramey's Wellbore Heat Transmission Revisited
,”
SPE J.
,
9
(
4
), pp.
465
474
.
37.
Trichel
,
D. K.
, and
Fabian
,
J. A.
,
2011
, “
Understanding and Managing Bottom Hole Circulating Temperature Behavior in Horizontal HT Wells-A Case Study Based on Haynesville Horizontal Wells
,” SPE/IADC Drilling Conference and Exhibition
, Amsterdam, The Netherlands, Mar. 1–3,
SPE
Paper No. SPE-140332-MS.
38.
Yang
,
M.
,
Zhao
,
X.
,
Meng
,
Y.
,
Li
,
G.
,
Zhang
,
L.
,
Xu
,
H.
, and
Tang
,
D.
,
2017
, “
Determination of Transient Temperature Distribution Inside a Wellbore Considering Drill String Assembly and Casing Program
,”
Appl. Therm. Eng.
,
118
, pp.
299
314
.
39.
Mao
,
L.
,
Liu
,
Q.
,
Nie
,
K.
, and
Wang
,
G.
,
2016
, “
Temperature Prediction Model of Gas Wells for Deep-Water Production in South China Sea
,”
J. Nat. Gas Sci. Eng.
,
36
(Pt. A), pp.
708
718
.
40.
Li
,
G.
,
Yang
,
M.
,
Meng
,
Y.
,
Wen
,
Z.
,
Wang
,
Y.
, and
Yuan
,
Z.
,
2016
, “
Transient Heat Transfer Models of Wellbore and Formation Systems During the Drilling Process Under Well Kick Conditions in the Bottom-Hole
,”
Appl. Therm. Eng.
,
93
, pp.
339
347
.
41.
Mou
,
Y.
,
Yingfeng
,
M.
,
Gao
,
L.
,
Li
,
Y.
,
Chen
,
Y.
,
Zhao
,
X.
, and
Li
,
H.
,
2013
, “
Estimation of Wellbore and Formation Temperatures During the Drilling Process Under Lost Circulation Conditions
,”
Math. Probl. Eng.
,
2013
, p.
579091
.
You do not currently have access to this content.