Premixed charge compression ignition (PCCI) combustion is a novel combustion concept, which reduces oxides of nitrogen (NOx) and particulate matter (PM) emissions simultaneously. However, PCCI combustion cannot be implemented in commercial engines due to its handicap in operating at high engine loads. This study is focused on the development of hybrid combustion engine in which engine can be operated in both combustion modes, namely, PCCI and compression ignition (CI). Up to medium loads, engine was operated in PCCI combustion and at higher loads, the engine control unit (ECU) automatically switched the engine operation to CI combustion mode. These combustion modes can be automatically switched by varying the fuel injection parameters and exhaust gas recirculation (EGR) by an open ECU. The experiments were carried out at constant engine speed (1500 rpm) and the load was varied from idling to full load (5.5 bar brake mean effective pressure (BMEP)). To investigate the emission and particulate characteristics during different combustion modes and mode switching, continuous sampling of the exhaust gas was done for a 300 s cycle, which was specifically designed for this study. Results showed that PCCI combustion resulted in significantly lower NOx and PM emissions compared to the CI combustion. Lower exhaust gas temperature (EGT) in the PCCI combustion mode resulted in slightly inferior engine performance. Slightly higher concentration of unregulated emission species such as sulfur dioxide (SO2) and formaldehyde (HCHO) in PCCI combustion mode was another important observation from this study. Lower concentration of aromatic compounds in PCCI combustion compared to CI combustion reflected relatively lower toxicity of the exhaust gas. Particulate number-size distribution showed that most particulates emitted in PCCI combustion mode were in the accumulation mode particle (AMP) size range, however, CI combustion emitted relatively smaller sized particles, which were more harmful to the human health. Overall, this study indicated that mode switching has significant potential for application of PCCI combustion mode in production grade engines for automotive sector, which would result in relatively cleaner engine exhaust compared to CI combustion mode engines.

References

References
1.
Agarwal
,
A. K.
,
Singh
,
A. P.
, and
Maurya
,
R. K.
,
2017
, “
Evolution, Challenges and Path Forward for Low Temperature Combustion Engines
,”
Prog. Energy Combust. Sci.
,
61
, pp.
1
56
.
2.
Weiskirch
,
C.
, and
Mueller
,
E.
,
2007
, “
Advanced in Diesel Engine Combustion: Split Combustion
,”
SAE
Paper No. 2007-01-0178.
3.
Musculus
,
M. P. B.
,
Miles
,
P. C.
, and
Pickett
,
L. M.
,
2013
, “
Conceptual Models for Partially Premixed Low-Temperature Diesel Combustion
,”
Prog. Energy Combust. Sci.
,
39
(
2–3
), pp.
246
283
.
4.
Santoso
,
H.
,
Matthews
,
J.
, and
Cheng
,
W. K.
,
2005
, “
Managing SI/HCCI Dual-Mode Engine Operation
,”
SAE
Paper No. 2005-01-0162.
5.
Milovanovic
,
N.
,
Dave
,
B.
, and
Gedge
,
S.
,
2005
, “
Cam Profile Switching and Phasing Strategy Versus Fully Variable Valve Train Strategy for Switching Between Spark Ignition and Controlled Auto Ignition Modes
,”
SAE
Paper No. 2005-01-0766.
6.
Zhang
,
Y.
,
Xie
,
H.
, and
Zhao
,
H.
,
2009
, “
Investigation of SI-HCCI Hybrid Combustion and Control Strategies for Combustion Mode Switching in a Four-Stroke Gasoline Engine
,”
Combust. Sci. Tech.
,
181
(
5
), pp.
782
799
.
7.
Narayanaswamy
,
K.
, and
Rutland
,
C.
,
2006
, “
A Modeling Investigation of Combustion Control Variables During DI-Diesel HCCI Engine Transients
,”
SAE
Paper No. 2006-01-1084.
8.
Fang
,
F. Y.
,
Ouyang
,
M.
,
Gao
,
G.
, and
Chen
,
L.
,
2013
, “
Combustion Mode Switching Control in a HCCI Diesel Engine
,”
Appl. Energy
,
110
, pp.
190
200
.
9.
Wang
,
J. M.
,
2008
, “
Hybrid Robust Air-Path Control for Diesel Engines Operation Conventional and Low Temperature Combustion and Conventional Diesel Combustion Modes
,”
IEEE Trans Control Syst. Technol.
,
16
(
6
), pp.
1138
1151
.
10.
Burton
,
J.
,
Williams
,
D.
,
Glewen
,
W.
, and
Andrie
,
M.
,
2009
, “
Investigation of Transient Emissions and Mixed Mode Combustion for a Light Duty Diesel Engine
,”
SAE
Paper No. 2009-01-1347.
11.
Busch
,
S.
,
Bohac
,
S. V.
, and
Assanis
,
D. N.
,
2008
, “
A Study of the Transition Between Lean Conventional Diesel Combustion and Lean, Premixed, Low-Temperature Diesel Combustion
,”
ASME J. Engine Gas Turbines Power
,
130
(
5
), p.
052804
.
12.
Black
,
J.
,
Eastwood
,
P. G.
,
Tufail
,
K.
,
Winstanley
,
T.
, and
Hardalupas
,
Y.
,
2007
, “
Inter-Correlations Between Smoke Opacity, Legal Particulate Sampling (LPS) and TEOM, During Transient Operation of a Diesel Engine
,”
SAE
Paper No. 2007-01-2060.
13.
Hagena
,
R. J.
,
Filipi
,
Z. S.
, and
Assanis
,
D. N.
,
2006
, “
Transient Diesel Emissions: Analysis of Engine Operation During a Tipin
,”
SAE
Paper No. 2006-01-1151.
14.
Tanabe
,
K.
,
Komatsu
,
F.
, and
Nakayama
,
S.
,
2011
, “
A Study on Mode Transition Control Between PCI and Conventional Combustion in a Diesel Engine
,”
Int. J. Engine Res.
,
12
(
1
), pp.
69
86
.
15.
Banerjee
,
S.
, and
Rutland
,
C.
,
2012
, “
Numerical Investigation of High Powered Diesel Mode Transition Using Large Eddy Simulations
,”
SAE
Paper No. 2012-01-0693.
16.
Han
,
S.
,
Bae
,
C.
, and
Choi
,
S. B.
,
2012
, “
Effects of Operating Parameters on Mode Transition Between Low Temperature Combustion and Conventional Combustion in a Light Duty Diesel Engine
,”
Int. J. Engine Res
.,
14
(3), pp. 231–246.
17.
Han
,
S.
,
Kim
,
H.
, and
Bae
,
C.
,
2013
, “
Strategy for Mode Transition Between Low Temperature Combustion and Conventional Combustion in a Diesel Engine
,”
SAE
Paper No. 2013-24-0058.
18.
Kim
,
K.
,
Han
,
S.
, and
Bae
,
C.
,
2011
, “
Mode Transition Between Low Temperature Combustion and Conventional Combustion With EGR and Injection Modulation in a Diesel Engine
,”
SAE
Paper No. 2011-01-1389.
19.
Rohani
,
B.
,
Park
,
S.
, and
Bae
,
C.
,
2015
, “
Effect of Injection Strategy on Low Temperature Conventional Diesel Combustion Mode Transition
,”
SAE
Paper No. 2015-01-0836.
20.
Bae
,
C.
,
Rohani
,
B.
, and
Park
,
S. S.
,
2016
, “
Effect of Injection Strategy on Smoothness, Emissions and Soot Characteristics of PCCI-Conventional Diesel Mode Transition
,”
Appl. Therm. Eng.
,
93
, pp.
1033
1042
.
21.
Ouyang
,
M.
,
Yang
,
F.
,
Gao
,
G.
,
Chen
,
L.
, and
Yang
,
Y.
,
2013
, “
Research on a Diesel HCCI Engine Assisted by an ISG Motor
,”
Appl. Energy
,
101
, pp.
718
729
.
22.
Shi
,
L.
,
Hu
,
W.
, and
Deng
,
K.
,
2014
, “
Effects of Fuel Compensation in Transitional Cycles on the Smoothness of Combustion Mode Switching in a Diesel Engine
,”
Fuel Process. Technol.
,
118
, pp.
55
63
.
23.
Deng
,
K.
,
Xu
,
M.
, and
Gui
,
Y.
,
2015
, “
Fuel Injection and EGR Control Strategy on Smooth Switching of CI/HCCI Mode in a Diesel Engine
,”
J. Energy Inst.
,
88
(
2
), pp.
157
168
.
24.
Agarwal
,
A. K.
,
Shukla
,
P. C.
,
Patel
,
C.
,
Gupta
,
J. G.
,
Sharma
,
N.
,
Prasad
,
R. K.
, and
Agarwal
,
R. A.
,
2016
, “
Unregulated Emissions and Health Risk Potential From Biodiesel (KB5, KB20) and Methanol Blend (M5) Fuelled Transportation Diesel Engines
,”
Renewable Energy
,
98
, pp.
283
291
.
25.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2015
, “
Diesoline, Diesohol, and Diesosene Fuelled HCCI Engine Development
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052212
.
26.
Hou
,
J.
,
Liu
,
J.
,
Wei
,
Y.
, and
Jiang
,
Z.
,
2016
, “
Experimental Study on In-Cylinder Pressure Oscillations of Homogenous Charge Compression Ignition–Direct Injection Combustion Engine Fueled With Dimethyl Ether
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052211
.
27.
Gao
,
T.
,
Divekar
,
P.
,
Asad
,
U.
,
Han
,
X.
,
reader
,
G. T.
,
Wang
,
M.
,
Zheng
,
M.
, and
Tjong
,
J.
,
2013
, “
An Enabling Study of Low Temperature Combustion With Ethanol in a Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042203
.
28.
Bureau of Indian Standards
,
1999
, “
Automotive Vehicles—Exhaust emissions—Gaseous Pollutants From Vehicles Fitted With Compression Ignition Engines—Method of Measurement
,” Bureau of Indian Standards, New Delhi, India, Indian Standard No.
14273
.
29.
Singh
,
A. P.
,
Jain
,
A.
, and
Agarwal
,
A. K.
,
2017
, “
Fuel-Injection Strategy for PCCI Engine Fueled by Mineral Diesel and Biodiesel Blends
,”
Energy Fuels
,
31
(
8
), pp.
8594
8607
.
30.
Nord
,
A. J.
,
Hwang
,
J. T.
, and
Northrop
,
W. F.
,
2017
, “
Emissions From a Diesel Engine Operating in a Dual-Fuel Mode Using Port-Fuel Injection of Heated Hydrous Ethanol
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022204
.
31.
Dumitrescu
,
C. E.
,
Cheng
,
A. S.
,
Kurtz
,
E.
, and
Mueller
,
C. J.
,
2017
, “
A Comparison of Methyl Decanoate and Tripropylene Glycol Monomethyl Ether for Soot-Free Combustion in an Optical Direct-Injection Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042210
.
32.
Agarwal
,
A. K.
,
Gadekar
,
S.
, and
Singh
,
A. P.
,
2018
, “
In-Cylinder Flow Evolution Using Tomographic Particle Imaging Velocimetry in an Internal Combustion Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012207
.
33.
Fang
,
W.
,
Kittelson
,
D. B.
, and
Northrop
,
W. F.
,
2017
, “
Dilution Sensitivity of Particulate Matter Emissions From Reactivity-Controlled Compression Ignition Combustion
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032204
.
34.
Grosjean
,
E.
,
Rasmussen
,
R. A.
, and
Grosjean
,
D.
,
1998
, “
Ambient Levels of Gas Phase Pollutants in Porto Alegre
,”
Brazil Atmos. Environ.
,
32
(
20
), pp.
3371
3379
.
35.
Ellenhorn
,
M. J.
, and
Barceloux
,
D. G.
,
1988
,
Medical Toxicology: Diagnosis and Treatment of Human Poisoning
, Elsevier, New York, pp.
609
610
.
36.
Agarwal
,
A. K.
,
Shukla
,
P. C.
,
Gupta
,
J. G.
,
Patel
,
C.
,
Prasad
,
R. K.
, and
Sharma
,
N.
,
2015
, “
Unregulated Emissions From a Gasohol (E5, E15, M5, and M15) Fuelled Spark Ignition Engine
,”
Appl. Energy
,
154
, pp.
732
741
.
37.
Bermúdez
,
V.
,
Lujan
,
J. M.
,
Pla
,
B.
, and
Linares
,
W. G.
,
2011
, “
Comparative Study of Regulated and Unregulated Gaseous Emissions During NEDC in a Light-Duty Diesel Engine Fuelled With Fischer Tropsch and Biodiesel Fuels
,”
Biomass Bioenergy
,
35
(
2
), pp.
789
798
.
38.
Benignus
,
V. A.
,
1981
, “
Health Effects of Toluene: A Review
,”
Neurotoxicology
,
2
(
3
), pp.
567
588
.
39.
Held
,
T. J.
, and
Dryer
,
F. L.
,
1998
, “
A Comprehensive Mechanism for Methanol Oxidation
,”
Int. J. Chem. Kinet.
,
30
(
11
), pp.
805
830
.
40.
Wentzell
,
J. J. B.
,
Liggio
,
J.
,
Li
,
S. M.
,
Vlasenko
,
A.
,
Staebler
,
R.
,
Lu
,
G.
,
Poitras
,
M. J.
,
Chan
,
T.
, and
Brook
,
J. R.
,
2013
, “
Measurements of Gas Phase Acids in Diesel Exhaust: A Relevant Source of HNCO?
,”
Environ. Sci. Technol.
,
47
(
14
), pp.
7663
7671
.
41.
Brady
,
J. M.
,
Crisp
,
T. A.
,
Collier
,
S.
,
Kuwayama
,
T.
,
Forestieri
,
S. D.
,
Perraud
,
V.
,
Zhang
,
Q.
,
Kleeman
,
M. J.
,
Cappa
,
C. D.
, and
Bertram
,
T. H.
,
2014
, “
Real-Time Emission Factor Measurements of Isocyanic Acid From Light Duty Gasoline Vehicles
,”
Environ. Sci. Technol.
,
48
(
19
), pp.
11405
11412
.
42.
Roberts
,
J. M.
,
Veres
,
P. R.
,
Cochran
,
A. K.
,
Warneke
,
C.
,
Burling
,
I. R.
,
Yokelson
,
R. J.
,
Lerner
,
B.
,
Gilman
,
J. B.
,
Kuster
,
W. C.
,
Fall
,
R.
, and
de Gouw
,
J.
,
2011
, “
Isocyanic Acid in the Atmosphere and Its Possible Link to Smoke-Related Health Effects
,”
Proc. Natl. Acad. Sci. U. S. A.
,
108
(
22
), pp.
8966
8971
.
You do not currently have access to this content.