Carbon nanotubes (CNTs) have high surface areas and excellent mechanical, electrical, and chemical properties, thus they can be useful in applications related to extraction and conversion of energy. They can be readily produced from hydrocarbon feedstocks. In this work, ethylene, the most voluminously produced hydrocarbon, was used as a CNT feedstock. It was pyrolytically decomposed at elevated temperatures (984–1130 K) to generate CNTs, by catalytic chemical vapor deposition (CVD) on stainless steel substrates. To explore possible utilization of carbon dioxide, a typical combustion byproduct, the ethylene gas was introduced to a preheated CVD reactor at the presence of various amounts of CO2, in a balance of inert nitrogen gas. The ethylene pyrolyzates were assessed at the presence/absence of catalysts and CO2 to identify the gaseous carbon growth agents. Experimental findings were also contrasted to predictions of a detailed chemical kinetic model. It was found that whereas decomposition of ethylene was somewhat inhibited by CO2 at the presence of the catalyst support, its conversion to CNTs was promoted. CNTs consistently formed at 5% CO2. Maximum yields of CNTs occurred at 1130 K, whereas highest CNT quality was achieved at 1080 K. Hydrogen and 1,3-butadiene (C4H6) were experimentally found to be the most abundant species of ethylene thermal decomposition. This was in agreement with the model, which also highlighted the importance of unimolecular hydrogen elimination.

References

References
1.
Vander Wal
,
R. L.
,
Hall
,
L. J.
, and
Berger
,
G. M.
,
2002
, “
Optimization of Flame Synthesis for Carbon Nanotubes Using Supported Catalyst
,”
J. Phys. Chem. B
,
106
(
51
), pp.
13122
13132
.
2.
Hall
,
B.
,
Zhuo
,
C.
,
Levendis
,
Y. A.
, and
Richter
,
H.
,
2011
, “
Influence of the Fuel Structure on the Flame Synthesis of Carbon Nanomaterials
,”
Carbon
,
49
(
11
), pp.
3412
3423
.
3.
Lam
,
S.-M.
,
Sin
,
J.-C.
,
Abdullah
,
A. Z.
, and
Mohamed
,
A. R.
,
2014
, “
Photocatalytic TiO2/Carbon Nanotube Nanocomposites for Environmental Applications: An Overview and Recent Developments
,”
Fullerenes, Nanotubes Carbon Nanostruct.
,
22
(
5
), pp.
471
509
.
4.
Singh
,
I.
,
Rehni
,
A. K.
,
Kumar
,
P.
,
Kumar
,
M.
, and
Aboul-Enein
,
H.-Y.
,
2009
, “
Carbon Nanotubes: Synthesis, Properties and Pharmaceutical Applications
,”
Fullerenes, Nanotubes Carbon Nanostruct.
,
17
(
4
), pp.
361
377
.
5.
Wong
,
K. V.
, and
Bachelier
,
B.
,
2013
, “
Carbon Nanotubes Used for Renewable Energy Applications and Environmental Protection/Remediation: A Review
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021601
.
6.
Gilani
,
N.
,
Hendijani
,
A. D.
, and
Seyedin
,
F.
,
2016
, “
Increasing the Heating Value of Ethnol Using Fanctionalized Carbon Nanotubes
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012001
.
7.
Patel
,
V.
,
2011
, “Global Carbon Nanotubes Market—Industry Beckons,” Nanowerk LLC, Honolulu, HI, accessed Oct. 26, 2017, https://www.nanowerk.com/spotlight/spotid=23118.php
8.
De Volder
,
M.
,
Sameh
,
F. L.
,
Tawfick
,
H.
,
Baughman
,
R. H.
, and
Hart
,
A. J.
,
2013
, “
Carbon Nanotubes: Present and Future Commercial Applications
,”
Science
,
339
(
6119
), pp.
535
539
.
9.
Healy
,
M. L.
,
Dahlben
,
L. J.
, and
Isaacs
,
J. A.
,
2008
, “
Environmental Assessment of Single-Walled Carbon Nanotube Processes
,”
J. Ind. Ecol.
,
12
(
3
), pp.
376
393
.
10.
Zhuo
,
C.
,
Alves
,
J. O.
,
Tenorio
,
J. A. S.
, and
Levendis
,
Y. A.
,
2012
, “
Synthesis of Carbon Nanomaterials Through Up-Cycling Agricultural and Municipal Solid Wastes
,”
Ind. Eng. Chem. Res.
,
51
(
7
), pp.
2922
2930
.
11.
Zhuo
,
C.
, and
Levendis
,
Y. A.
,
2014
, “
Upcycling Waste Plastics Into Carbon Nanomaterials: A Review
,”
J. Appl. Polym. Sci.
,
131
(
4
), pp.
39931
39944
.
12.
Hata
,
K.
,
Futaba
,
D. N.
,
Mizuno
,
K.
,
Namai
,
T.
,
Yumura
,
M.
, and
Iijima
,
S.
,
2004
, “
Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes
,”
Science
,
306
(
5700
), pp.
1362
1364
.
13.
Li
,
G.
,
Chakrabarti
,
S.
,
Schulz
,
M.
, and
Shanov
,
V.
,
2010
, “
The Effect of Substrate Positions in Chemical Vapor Deposition Reactor on the Growth of Carbon Nanotube Arrays
,”
Carbon
,
48
(
7
), pp.
2111
2115
.
14.
Wen
,
Q.
,
Qian
,
W.
,
Nie
,
J.
,
Cao
,
A.
,
Ning
,
G.
,
Wang
,
Y.
,
Hu
,
L.
,
Zhang
,
Q.
,
Huang
,
J.
, and
Wei
,
F.
,
2010
, “
100 Mm Long, Semiconducting Triple-Walled Carbon Nanotubes
,”
Adv. Mater.
,
22
(
16
), pp.
1867
1871
.
15.
Bajad
,
G.
,
Guguloth
,
V.
,
Vijayakumar
,
R. P.
, and
Bose
,
S.
,
2016
, “
Conversion of Plastic Waste Into CNTs Using Ni/Mo/MgO Catalyst—An Optimization Approach by Mixture Experiment
,”
Fullerenes, Nanotubes Carbon Nanostruct.
,
24
(
2
), pp.
162
169
.
16.
Aboul-Enein
,
A. A.
,
Adel-Rahman
,
H.
,
Haggar
,
A. M.
, and
Awadallah
,
A. E.
,
2017
, “
Simple Method for Synthesis of Carbon Nanotubes Over Ni–Mo/Al2O3 Catalyst Via Pyrolysis Polyethylene Waste Using a Two-Stage Process
,”
Fullerenes, Nanotubes Carbon Nanostruct.
,
25
(
4
), pp.
211
222
.
17.
Yu
,
L.
,
Lv
,
Y.
,
Wu
,
K.
, and
Li
,
C.
,
2015
, “
Synthesis of Carbon Nanotubes by Using a Series of Phenyl Derivatives as Precursors
,”
Fullerenes, Nanotubes Carbon Nanostruct.
,
23
(
12
), pp.
1073
1076
.
18.
Öncel
,
Ç.
, and
Yürüm
,
Y.
,
2006
, “
Carbon Nanotube Synthesis Via the Catalytic CVD Method: A Review on the Effect of Reaction Parameters
,”
Fullerenes, Nanotubes Carbon Nanostruct.
,
14
(
1
), pp.
17
37
.
19.
Mehrnoush
,
K.
,
Chai
,
S.-P.
,
Tan
,
S. H.
, and
Mohamed
,
A. R.
,
2013
, “
Effects of Growth Parameters on the Morphology of Aligned Carbon Nanotubes Synthesized by Floating Catalyst and the Growth Model
,”
Fullerenes, Nanotubes Carbon Nanostruct.
,
21
(
9
), pp.
765
777
.
20.
Dosodia
,
A.
,
Lal
,
C.
,
Singh
,
B. P.
,
Mathur
,
R. B.
, and
Sharma
,
D. K.
,
2009
, “
Development of Catalyst Free Carbon Nanotubes From Coal and Waste Plastics
,”
Fullerenes, Nanotubes Carbon Nanostruct.
,
17
(
5
), pp.
567
582
.
21.
Kar
,
K. K.
,
Rahaman
,
A.
,
Agnihotri
,
P.
, and
Sathiyamoorthy
,
D.
,
2009
, “
Synthesis of Carbon Nanotubes on the Surface of Carbon Fiber/Fabric by Catalytic Chemical Vapor Deposition and Their Characterization
,”
Fullerenes, Nanotubes Carbon Nanostruct.
,
17
(
3
), pp.
209
229
.
22.
Zheng
,
B.
,
Lu
,
C. G.
,
Gu
,
G.
,
Makarovski
,
A.
,
Finkelstein
,
G.
, and
Liu
,
J.
,
2002
, “
Efficient CVD Growth of Single-Walled Carbon Nanotubes on Surfaces Using Carbon Monoxide Precursor
,”
Nano Lett.
,
2
(
8
), pp.
895
898
.
23.
Malgas
,
G. F.
,
Arendse
,
C. J.
,
Cele
,
N. P.
, and
Cummings
,
F. R.
,
2008
, “
Effect of Mixture Ratios and Nitrogen Carrier Gas Flow Rates on the Morphology of Carbon Nanotube Structures Grown by CVD
,”
J. Mater. Sci.
,
43
(
3
), pp.
1020
1025
.
24.
Zhang
,
C.-M.
,
Fu
,
Y.-B.
,
Chen
,
Q.
, and
Zhang
,
Y.-F.
,
2008
, “
Effects of Oxygen on Multiwall Carbon Nanotubes Growth by PECVD
,”
Front. Mater. Sci. China
,
2
(
1
), pp.
37
41
.
25.
Labunov
,
V. A.
,
Shulitski
,
B. G.
,
Prudnikava
,
A. L.
,
Shaman
,
Y. P.
, and
Basaev
,
A. S.
,
2009
, “
The Effect of Gas-Dynamic Factors on Selective Carbon-Nanotube Synthesis by Injection CVD Method for Field-Emission Cathodes
,”
J. Soc. Inf. Display
,
17
(
5
), pp.
489
495
.
26.
Yoon
,
S. I.
,
Heo
,
S. T.
,
Kim
,
S. S.
,
Lee
,
Y. K.
,
Chun
,
H. T.
, and
Lee
,
D. G.
,
2009
, “
Effect of Factors on Growth of Carbon Nanotubes by Thermal CVD
,”
Mol. Cryst. Liq. Cryst.
,
499
(1), pp.
472
481
.
27.
Kumar
,
M.
, and
Ando
,
Y.
,
2010
, “
Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production
,”
J. Nanosci. Nanotechnol.
,
10
(
22
), pp.
3739
3758
.
28.
Bajwa
,
N.
,
Li
,
X.
,
Ajayan
,
P. M.
, and
Vajtai
,
R.
,
2008
, “
Mechanisms for Catalytic CVD Growth of Multiwalled Carbon Nanotubes
,”
J. Nanosci. Nanotechnol.
,
8
(
11
), pp.
6054
6064
.
29.
Kuwana
,
K.
,
Li
,
T.
, and
Saito
,
K.
,
2006
, “
Gas-Phase Reactions During CVD Synthesis of Carbon Nanotubes: Insights Via Numerical Experiments
,”
Chem. Eng. Sci.
,
61
(
20
), pp.
6718
6726
.
30.
Ago
,
H.
,
Uehara
,
N.
,
Yoshihara
,
N.
,
Tsuji
,
M.
,
Yumura
,
M.
,
Tomonaga
,
N.
, and
Setoguchi
,
T.
,
2006
, “
Gas Analysis of the CVD Process for High Yield Growth of Carbon Nanotubes Over Metal-Supported Catalysts
,”
Carbon
,
44
(
14
), pp.
2912
2918
.
31.
Plata
,
D. L.
,
Hart
,
A. J.
,
Reddy
,
C. M.
, and
Gschwend
,
P. M.
,
2009
, “
Early Evaluation of Potential Environmental Impacts of Carbon Nanotube Synthesis by Chemical Vapor Deposition
,”
Environ. Sci. Technol.
,
43
(
21
), pp.
8367
8373
.
32.
Nessim
,
G. D.
,
Seita
,
M.
,
Plata
,
D. L.
,
O'Brien
,
K. P.
,
Hart
,
A. J.
,
Meshot
,
E. R.
,
Reddy
,
C. M.
,
Gschwend
,
P. M.
, and
Thompson
,
C. V.
,
2011
, “
Precursor Gas Chemistry Determines the Crystallinity of Carbon Nanotubes Synthesized at Low Temperature
,”
Carbon
,
49
(
3
), pp.
804
810
.
33.
Ma
,
H.
,
Pan
,
L.
, and
Nakayama
,
Y.
,
2010
, “
Influence of Gas-Phase Reactions on the Growth of Carbon Nanotubes
,”
J. Phys. Chem. C
,
114
(
6
), pp.
2398
2402
.
34.
Shukla
,
B.
,
Saito
,
T.
,
Ohmori
,
S.
,
Koshi
,
M.
,
Yumura
,
M.
, and
Iijima
,
S.
,
2010
, “
Interdependency of Gas Phase Intermediates and Chemical Vapor Deposition Growth of Single Wall Carbon Nanotubes
,”
Chem. Mater.
,
22
(
22
), pp.
6035
6043
.
35.
Zhuo
,
C.
,
Hall
,
B.
,
Richter
,
H.
, and
Levendis
,
Y. A.
,
2010
, “
Synthesis of Carbon Nanotubes by Sequential Pyrolysis and Combustion of Polyethylene
,”
Carbon
,
48
(
14
), pp.
4024
4034
.
36.
Alves
,
J. O.
,
Zhuo
,
C.
,
Levendis
,
Y. A.
, and
Tenorio
,
J. A. S.
,
2011
, “
Catalytic Conversion of Wastes From the Bioethanol Production Into Carbon Nanomaterials
,”
Appl. Catal., B
,
106
(
3–4
), pp.
433
444
.
37.
Vander Wal
,
R. L.
,
2000
, “
Flame Synthesis of Substrate-Supported Metal-Catalyzed Carbon Nanotubes
,”
Chem. Phys. Lett.
,
324
(
1–3
), pp.
217
223
.
38.
Vander Wal
,
R. L.
,
Hall
,
L. J.
, and
Berger
,
G. M.
,
2002
, “
The Chemistry of Premixed Flame Synthesis of Carbon Nanotubes Using Supported Catalysts
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1079
1085
.
39.
Zhuo
,
C.
,
Khanshan
,
F.
,
West
,
R.
,
Richter
,
H.
, and
Levendis
,
Y. A.
,
2015
, “
Effects of CO2 on Carbon Nanotube Formation From Thermal Decomposition of Ethylene
,”
MRS Online Proc. Libr.
,
1747
, p. mrsf14-1747-hh04-09.
40.
Huang
,
J. Q.
,
Zhang
,
Q.
,
Zhao
,
M. Q.
, and
Wei
,
F.
,
2009
, “
Process Intensification by CO2 for High Quality Carbon Nanotube Forest Growth: Double-Walled Carbon Nanotube Convexity or Single-Walled Carbon Nanotube Bowls?
,”
Nano Res.
,
2
(
11
), pp.
872
881
.
41.
Corthals
,
S.
,
Van Noyen
,
J.
,
Geboers
,
J.
,
Vosch
,
T.
,
Liang
,
D.
,
Ke
,
X.
,
Hofkens
,
J.
,
Van Tendeloo
,
G.
,
Jacobs
,
P.
, and
Sels
,
B.
,
2012
, “
The Beneficial Effect of CO2 in the Low Temperature Synthesis of High Quality Carbon Nanofibers and Thin Multiwalled Carbon Nanotubes From CH4 over Ni Catalysts
,”
Carbon
,
50
(
2
), pp.
372
384
.
42.
Wen
,
Q.
,
Qian
,
W.
,
Wei
,
F.
,
Liu
,
Y.
,
Ning
,
G.
, and
Zhang
,
Q.
,
2007
, “
CO2-Assisted SWNT Growth on Porous Catalysts
,”
Chem. Mater.
,
19
(
6
), pp.
1226
1230
.
43.
Chen
,
M.
,
Kao
,
Y.-C.
,
Yu
,
H. W.
,
Lu
,
S.-C.
, and
Koo
,
H.-S.
,
2007
, “
Influence of CO2 and N2 on the Growth of Carbon Nanotubes by Using Thermal Chemical Vapor Deposition
,”
Thin Solid Films
,
516
(
2–4
), pp.
277
283
.
44.
Li
,
Z.
,
Xu
,
Y.
,
Ma
,
X.
,
Dervishi
,
E.
,
Saini
,
V.
,
Biris
,
A. R.
,
Lupu
,
D.
, and
Biris
,
A. S.
,
2008
, “
CO2 Enhanced Carbon Nanotube Synthesis From Pyrolysis of Hydrocarbons
,”
Chem. Commun.
,
28
, pp.
3260
3262
.
45.
Yang
,
X. S.
,
Yuan
,
L. X.
,
Peterson
,
V. K.
,
Yin
,
Y. B.
,
Minett
,
A. I.
, and
Harris
,
A. T.
,
2011
, “
Open-Ended Aligned Carbon Nanotube Arrays Produced Using CO2-Assisted Floating-Ferrocene Chemical Vapor Deposition
,”
J. Phys. Chem. C
,
115
(
29
), pp.
14093
14097
.
46.
Magrez
,
A.
,
Seo
,
J. W.
,
Smajda
,
R.
,
Mionic
,
M.
, and
Forro
,
L.
,
2010
, “
Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth
,”
Materials
,
3
(
12
), pp.
4871
4891
.
47.
Magrez
,
A.
,
Seo
,
J. W.
,
Smajda
,
R.
,
Korbely
,
B.
,
Andresen
,
J. C.
,
Mionić
,
M.
,
Casimirius
,
S.
, and
Forró
,
L.
,
2010
, “
Low-Temperature, Highly Efficient Growth of Carbon Nanotubes on Functional Materials by an Oxidative Dehydrogenation Reaction
,”
ACS Nano
,
4
(
7
), pp.
3702
3708
.
48.
Magrez
,
A.
,
Seo
,
J. W.
,
Kuznetsov
,
V. L.
, and
Forró
,
L. F.
,
2007
, “
Evidence of an Equimolar C2H2–CO2 Reaction in the Synthesis of Carbon Nanotubes
,”
Angew. Chem. Int. Ed.
,
46
(
3
), pp.
441
444
.
49.
Gaiktwad
,
A. V.
,
Rout
,
T. K.
,
Van der Plas
,
D.
,
Dennis
,
R. V.
,
Banerjee
,
S.
,
Benito
,
S. P.
, and
Lefferts
,
L.
,
2012
, “
Carbon Nanotube/Carbon Nanofiber Growth From Industrial by-Product Gases on Low- and High-Alloy Steels
,”
Carbon
,
50
(
12
), pp.
4722
4731
.
50.
Zhuo
,
C.
,
Wang
,
X.
,
Nowak
,
W.
, and
Levendis
,
Y. A.
,
2014
, “
Oxidative Heat Treatment of 316 L Stainless Steel for Effective Catalytic Growth of Carbon Nanotubes
,”
Appl. Surf. Sci.
,
313
, pp.
227
236
.
51.
Ergut
,
A.
,
Therrien
,
R. J.
,
Levendis
,
Y. A.
,
Richter
,
H.
,
Howard
,
J. B.
, and
Carlson
,
J. B.
,
2009
, “
Chemical Speciation of Premixed Ethylbenzene Flames at the Soot Onset Limit at Various φ,T) Pairs
,”
Combust. Flame
,
156
(
5
), pp.
1014
1022
.
52.
Zhang
,
H.-Y.
, and
McKinnon
,
J. T.
,
1995
, “
Elementary Reaction Modelling of High Temperature Benzene Combustion
,”
Combust. Sci. Technol.
,
107
(
4–6
), pp.
261
300
.
53.
Shandross
,
R. A.
,
Longwell
,
J. P.
, and
Howard
,
J. B.
,
1996
, “
Destruction of Benene in High-Temperature Flames: Chemistry of Benzene and Phenol
,”
26th Symposium (International) on Combustion
, Pittsburgh, PA, pp.
711
719
.
54.
Richter
,
H.
,
Grieco
,
W. J.
, and
Howard
,
J. B.
,
1999
, “
Formation Mechanism of Polycyclic Aromatic Hydrocarbons and Fullerenes in Premixed Benzene Flames
,”
Combust. Flame
,
119
(
1–2
), pp.
1
22
.
55.
Richter
,
H.
,
Benish
,
T. G.
,
Mazyar
,
O. A.
,
Green
,
W. H.
, and
Howard
,
J. B.
,
2000
, “
Formation of Polycyclic Aromatic Hydrocarbons and Their Radicals in a Nearly Sooting Premixed Benzene Flame
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
2609
2618
.
56.
Richter
,
H.
, and
Howard
,
J. B.
,
2002
, “
Formation and Consumption of Single-Ring Aromatic Hydrocarbons and Their Precursors in Premixed Acetylene, Ethylene and Benzene Flames
,”
Phys. Chem. Chem. Phys.
,
4
(
11
), pp.
2038
2055
.
57.
Dupont
,
L.
,
El Bakali
,
A.
,
Pauwels
,
J.-F.
,
Da Costa
,
I.
,
Meunier
,
P.
, and
Richter
,
H.
,
2003
, “
Investigation of Stoichiometric Methane/Air/Benzene (1.5%) and Methane/Air Low Pressure Flames
,”
Combust. Flame
,
135
(
1–2
), pp.
171
183
.
58.
Richter
,
H.
,
Mazyar
,
O. A.
,
Sumati
,
R.
,
Green
,
W. H.
,
Howard
,
J. B.
, and
Bozzelli
,
J. W.
,
2001
, “
Detailed Kinetic Study of the Growth of Small Polycyclic Aromatic Hydrocarbons. 1. 1-Naphthyl + Ethyne
,”
Phys. Chem. A
,
105
(
9
), pp.
1561
1573
.
59.
Chang
,
A. Y.
,
Bozzelli
,
J. W.
, and
Dean
,
A. M.
,
2000
, “
Kinetic Analysis of Complex Chemical Activation and Unimolecular Dissociation Reactions Using QRRK Theory and the Modified Strong Collision Approximation
,”
Z. Phys. Chem.
,
214
(
11
), pp.
1533
1573
.
60.
Richter
,
H.
,
Granata
,
S.
,
Green
,
W. H.
, and
Howard
,
J. B.
,
2005
, “
Detailed Modeling of PAH and Soot Formation in a Laminar Premixed Benzene/Oxygen/Argon Low-Pressure Flame
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1397
1405
.
61.
Ergut
,
A.
,
Granata
,
S.
,
Jordan
,
J.
,
Carlson
,
J. B.
,
Howard
,
J. B.
,
Richter
,
H.
, and
Levendis
,
Y. A.
,
2006
, “
PAH Formation in One-Dimensional Premixed Fuel-Rich Atmospheric Pressure Ethylbenzene and Ethyl Alcohol Flames
,”
Combust. Flame
,
144
(
4
), pp.
757
772
.
62.
Ergut
,
A.
,
Levendis
,
Y. A.
,
Richter
,
H.
,
Howard
,
J. B.
, and
Carlson
,
J. B.
,
2007
, “
The Effect of Equivalence Ratio on the Soot Onset Chemistry in One-Dimensional, Atmospheric-Pressure, Premixed Ethylbenzene Flames
,”
Combust. Flame
,
151
(
1–2
), pp.
173
195
.
63.
Ergut
,
A.
,
Therrien
,
R. J.
,
Levendis
,
Y. A.
,
Richter
,
H.
,
Howard
,
J. B.
, and
Carlson
,
J. B.
,
2008
, “
The Effect of Temperature on the Soot Onset Chemistry in One-Dimensional, Atmospheric-Pressure, Premixed Ethylbenzene Flames
,”
Combust. Flame
,
155
(
1–2
), pp.
232
246
.
64.
Therrien
,
R. J.
,
Ergut
,
A.
,
Levendis
,
Y. A.
,
Richter
,
H.
,
Howard
,
J. B.
, and
Carlson
,
J. B.
,
2010
, “
Investigation of Critical Equivalence Ratio and Chemical Speciation in Flames of Ethylbenzene-Ethanol Blends
,”
Combust. Flame
,
157
(
2
), pp.
296
312
.
65.
Wang
,
J.
,
Levendis
,
Y. A.
,
Richter
,
H.
,
Howard
,
J. B.
, and
Carlson
,
J. B.
,
2001
, “
Polycyclic Aromatic Hydrocarbon and Particulate Emissions From Two-Stage Combustion of Polystyrene:  The Effect of the Primary Furnace Temperature
,”
Environ. Sci. Technol.
,
35
(
17
), pp.
3541
3552
.
66.
Wang
,
J.
,
Richter
,
H.
,
Howard
,
J. B.
,
Levendis
,
Y. A.
, and
Carlson
,
J. B.
,
2002
, “
Polynuclear Aromatic Hydrocarbon and Particulate Emissions From Two-Stage Combustion of Polystyrene:  The Effects of the Secondary Furnace (Afterburner) Temperature and Soot Filtration
,”
Environ. Sci. Technol.
,
36
(
4
), pp.
797
808
.
67.
Wang
,
Z.
,
Richter
,
H.
,
Howard
,
J. B.
,
Jordan
,
J.
,
Carlson
,
J. B.
, and
Levendis
,
Y. A.
,
2003
, “
Laboratory Investigation of the Products of the Incomplete Combustion of Waste Plastics and Techniques for Their Minimization
,”
Ind. Eng. Chem. Res.
,
43
(
12
), pp.
2873
2886
.
68.
Wang
,
Z.
,
Wang
,
J.
,
Richter
,
H.
,
Howard
,
J. B.
,
Carlson
,
J. B.
, and
Levendis
,
Y. A.
,
2003
, “
Comparative Study on Polycyclic Aromatic Hydrocarbons, Light Hydrocarbons, Carbon Monoxide, and Particulate Emissions From the Combustion of Polyethylene, Polystyrene, and Poly(Vinyl Chloride)
,”
Energy Fuels
,
17
(
4
), pp.
999
1013
.
69.
Cuoci
,
A.
,
Frassoldati
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2009
, “
Formation of Soot and Nitrogen Oxides in Unsteady Counterflow Diffusion Flames
,”
Combust. Flame
,
156
(
10
), pp.
2010
2022
.
70.
Aiken
,
R. C.
,
1985
,
Stiff Computation
,
Oxford University Press
, Oxford, UK.
71.
Manca
,
D.
,
Buzzi-Ferraris
,
G.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2001
, “
Numerical Problems in the Solution of Oxidation and Combustion Models
,”
Combust. Theory Modell.
,
5
(
2
), pp.
185
199
.
72.
Buzzi-Ferraris
,
G.
,
1993
,
Scientific C++: Building Numerical Libraries the Object-Oriented Way
,
Addison-Wesley
,
Boston, MA
.
73.
Buzzi-Ferraris
,
G.
,
2010
,
BzzMath: Numerical Library in C++
,
Politecnico di Milano
,
Milan, Italy
.
74.
Ferraris
,
G. B.
, and
Manca
,
D.
,
1998
, “
BzzOde: A New C++ Class for the Solution of Stiff and Non-Stiff Ordinary Differential Equation Systems
,”
Comput. Chem. Eng.
,
22
(
11
), pp.
1595
1621
.
75.
Cuoci
,
A.
,
Mehl
,
M.
,
Buzzi-Ferraris
,
G.
,
Faravelli
,
T.
,
Manca
,
D.
, and
Ranzi
,
E.
,
2005
, “
Autoignition and Burning Rates of Fuel Droplets Under Microgravity
,”
Combust. Flame
,
143
(
3
), pp.
211
226
.
76.
Ruiz
,
M. P.
,
Callejas
,
A.
,
Millera
,
A.
,
Alzueta
,
M. U.
, and
Bilbao
,
R.
,
2007
, “
Soot Formation From C2H2 and C2H4 Pyrolysis at Different Temperatures
,”
J. Anal. Appl. Pyrolysis
,
79
(
1–2
), pp.
244
251
.
77.
Brüggert
,
M.
,
Hu
,
Z.
, and
Hüttinger
,
K. L.
,
1999
, “
Chemistry and Kinetics of Chemical Vapor Deposition of Pyrocarbon—Part VI: Influence of Temperature Using Methane as a Carbon Source
,”
Carbon
,
37
(
12
), pp.
2021
2030
.
78.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
,
Saito
,
R.
, and
Jorio
,
A.
,
2005
, “
Raman Spectroscopy of Carbon Nanotubes
,”
Phys. Rep.
,
409
(
2
), pp.
47
99
.
79.
Saito
,
R.
,
Fantini
,
C.
, and
Jiang
,
J.
,
2008
, “
Excitonic States and Resonance Raman Spectroscopy of Single-Wall Carbon Nanotubes
,”
Carbon Nanotubes
(Topics in Applied Physics, Vol. 111), Springer, Berlin, pp.
251
286
.
80.
Abián
,
M.
,
Millera
,
A.
,
Bilbao
,
R.
, and
Alzueta
,
M. U.
,
2012
, “
Effect of Recirculation Gases on Soot Formed From Ethylene Pyrolysis
,”
Combust. Sci. Technol.
,
184
(
7–8
), pp.
980
994
.
81.
Zhang
,
Y.
,
Lou
,
C.
,
Liu
,
D.
,
Li
,
Y.
, and
Ruan
,
L.
,
2013
, “
Chemical Effects of CO2 Concentration on Soot Formation in Jet-Stirred/Plug-Flow Reactor
,”
Chin. J. Chem. Eng.
,
21
(
11
), pp.
1269
1283
.
82.
Abián
,
M.
,
Millera
,
A.
,
Bilbao
,
R.
, and
Alzueta
,
M. U.
,
2012
, “
Experimental Study on the Effect of Different CO2 Concentrations on Soot and Gas Rroducts From Ethylene Thermal Decomposition
,”
Fuel
,
91
(
1
), pp.
307
312
.
You do not currently have access to this content.