The oriented perforating is the essential technique to guide the refracture reorientation, but the influence of the oriented perforation design on the refracture steering radius is still unclear. In this paper, the factors influencing the refracture reorientation were studied by simulation models and experiments. The effects of initial fracture, well production, and perforations on the refracture initiation and propagation were analyzed. Three-dimensional finite element models were conducted to quantify the impact of perforation depth, density, and azimuth on the refracture. The large-scale three-axis hydraulic fracturing experiments guided by oriented perforations were also carried out to verify the fracture initiation position and propagation pattern of the simulation results. The research results showed that perforations change the near-wellbore induced stress distribution, thus changing the steering radius of the refracture. According to the simulation results, the oriented perforation design has a significant influence on the perforation guidance effect and refracture characteristics. Five hydraulic fracturing experiments proved the influence of perforating parameters on fracture initiation and morphology, which have a right consistency between the simulation results. This paper presents a numerical simulation method for evaluating the influence of the refracture reorientation characteristics under the consideration of multiple prerefracturing induced-stress and put forward the oriented perforation field design suggestions according to the study results.

References

References
1.
Walser
,
D.
,
2016
, “
Technology Update: Leveraging Subsurface Insight, Screening, and Diversion Technology in Refracturing
,”
J. Pet. Technol.
,
68
(
01
), pp.
25
27
.
2.
Hong
,
L.
,
Zhao
,
J.
,
Hu
,
Y.
,
Wei
,
L.
,
Hu
,
G.
, and
Li
,
S.
,
2004
, “
Study on Mechanism of Inducing New Fractures for Refracturing Gas Wells
,”
Natural Gas Ind.
,
24
(
12
), pp.
102
104
.
3.
Cafaro
,
D. C.
,
Drouven
,
M. G.
, and
Grossmann
,
I. E.
,
2016
, “
Optimization Models for Planning Shale Gas Well Refracture Treatments
,”
Aiche J.
,
62
(
12
), pp.
4297
4307
.
4.
Rui
,
Z.
,
Peng
,
F.
,
Chang
,
H.
,
Ling
,
K.
,
Chen
,
G.
, and
Zhou
,
X.
,
2017
, “
Investigation Into the Performance of Oil and Gas Projects
,”
J. Natural Gas Sci. Eng.
,
38
, pp.
12
20
.
5.
Mendelsohn
,
D. A.
,
1984
, “
A Review of Hydraulic Fracture Modeling—Part I: General Concepts, 2D Models, Motivation for 3D Modeling
,”
ASME J. Energy Resour. Technol.
,
106
(
3
), pp.
369
378
.
6.
Green, A. E.
, and
Sneddon, I. N.
, 1946, “
The Distribution of Stress in the Neighborhood of a Crack in an Elastic Solid
,”
Proc. R. Soc. London
,
187
(1009), pp. 229–260.
7.
Wright
,
C. A.
,
Conant
,
R. A.
,
Stewart
,
D. W.
, and
Byerly
,
P. M.
,
1994
, “
Reorientation of Propped Refracture Treatments
,” Rock Mechanics in Petroleum Engineering, Delft, The Netherlands, Aug. 29–31,
SPE
Paper No. SPE-28078-MS.
8.
Chen
,
H. Y.
,
Teufel
,
L. W.
, and
Lee
,
R. L.
,
1995
, “
Coupled Fluid Flow and Geomechanics in Reservoir Study—I: Theory and Governing Equations
,”
SPE Annual Technical Conference and Exhibition
, Dallas, TX, Oct. 22–25,
SPE
Paper No. SPE-30752-MS.
9.
Rui
,
Z.
,
Guo
,
T.
,
Feng
,
Q.
,
Qu
,
Z.
,
Qi
,
N.
, and
Gong
,
F.
,
2018
, “
Influence of Gravel on the Propagation Pattern of Hydraulic Fracture in the Glutenite Reservoir
,”
J. Pet. Sci. Eng.
,
165
, pp. 627–639.
10.
Sedaghat
,
M. H.
,
Ghazanfari
,
M. H.
,
Parvazdavani
,
M.
, and
Morshedi
,
S.
,
2013
, “
Experimental Investigation of Microscopic/Macroscopic Efficiency of Polymer Flooding in Fractured Heavy Oil Five-Spot Systems
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032901
.
11.
Warren
,
W. E.
,
1981
, “
Packer-Induced Stresses During Hydraulic Well Fracturing
,”
ASME J. Energy Resour. Technol.
,
103
(
4
), pp.
336
354
.
12.
Zhou
,
D.
,
Zheng
,
P.
, and
Peng
,
J.
,
2015
, “
Induced Stress and Interaction of Fractures During Hydraulic Fracturing in Shale Formation
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062902
.
13.
Chen
,
Z. R.
,
Deng
,
J. G.
,
Zhu
,
H. Y.
,
Dong
,
G.
,
Hu
,
L. B.
, and
Lin
,
H.
,
2013
, “
Research on Initiation of Oriented Perforation Fracturing and Perforation Optimization Design Method
,”
Yantu Lixue/Rock Soil Mech.
,
34
(
8
), pp.
2309
2315
.http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201308036.htm
14.
Rui
,
Z.
,
Wang
,
X.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213
, pp.
76
91
.
15.
Ji
,
W.
,
Song
,
Y.
,
Meng
,
M.
, and
Huang
,
H.
,
2017
, “
Pore Characterization of Isolated Organic Matter From High Matured Gas Shale Reservoir
,”
Int. J. Coal Geol.
,
174
, pp.
31
40
.
16.
Bennion
,
B.
, and
Thomas
,
F. B.
,
2005
, “
Formation Damage Issues Impacting the Productivity of Low Permeability, Low Initial Water Saturation Gas Producing Formations
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
240
247
.
17.
Guo
,
T.
,
Liu
,
B.
,
Qu
,
Z.
,
Gong
,
D.
, and
Xin
,
L.
,
2017
, “
Study on Initiation Mechanisms of Hydraulic Fracture Guided by Vertical Multi-Radial Boreholes
,”
Rock Mech. Rock Eng.
,
50
(
7
), pp.
1767
1785
.
18.
Daneshy
,
A. A.
,
1973
, “
Design of Vertical Hydraulic Fractures
,”
J. Pet. Technol.
,
25
(
1
), pp.
83
97
.
19.
Zhang
,
G.
, and
Chen
,
M.
,
2010
, “
Dynamic Fracture Propagation in Hydraulic Re-Fracturing
,”
J. Pet. Sci. Eng.
,
70
(
3–4
), pp.
266
272
.
20.
Ketterij
,
R. G.
, and
Pater
,
C. J. D.
,
1999
, “
Impact of Perforations on Hydraulic Fracture Tortuosity
,”
SPE Prod. Facil.
,
14
(
2
), pp.
117
130
.
21.
Abdulwahid
,
M. A.
,
Kumar
,
I. N. N.
, and
Dakhil
,
S. F.
,
2014
, “
Influence of Radial Flux Inflow Profile on Pressure Drop of Perforated Horizontal Wellbore
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042909
.
22.
Karacan
,
C. O.
,
Grader
,
A. S.
, and
Halleck
,
P. M.
,
2001
, “
Mapping of Permeability Damage around Perforation Tunnels
,”
ASME J. Energy Resour. Technol.
,
123
(
3
), pp.
205
213
.
23.
Rui
,
Z.
,
Lu
,
J.
,
Zhang
,
Z.
,
Guo
,
R.
,
Ling
,
K.
,
Zhang
,
R.
, and
Patil
,
S.
,
2017
, “
A Quantitative Oil and Gas Reservoir Evaluation System for Development
,”
J. Natural Gas Sci. Eng.
,
42
, pp.
31
39
.
24.
Jianguang, W.
,
Xuesong, L.
,
Xuemei, L.
, and
Yuanyuan, M.
,
2017
, “
The Experimental and Model Study on Variable Mass Flow for Horizontal Wells With Perforated Completion
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062901
.
25.
Li
,
Y.
,
Jia
,
D.
,
Peng
,
J.
,
Fu
,
C.
, and
Zhang
,
J.
,
2017
, “
Evaluation Method of Rock Brittleness Based on Statistical Constitutive Relations for Rock Damage
,”
J. Pet. Sci. Eng.
,
153
, pp.
123
132
.
26.
Sneddon
,
I. N.
, and
Elliot
,
H. A.
,
1946
, “
The Opening of a Griffith Crack Under Internal Pressure
,”
Q. Appl. Math.
,
4
(
3
), pp.
262
267
.
27.
Ishida
,
T.
,
Chen
,
Q.
,
Mizuta
,
Y.
, and
Roegiers
,
J. C.
,
2004
, “
Influence of Fluid Viscosity on the Hydraulic Fracturing Mechanism
,”
ASME J. Energy Resour. Technol.
,
126
(
3
), pp.
190
200
.
28.
Guo
,
T. K.
,
Li
,
Y. C.
,
Ding
,
Y.
,
Qu
,
Z. Q.
, and
Gai
,
N. C.
,
2017
, “
Evaluation of Acid Fracturing Treatments in Shale Formation
,”
Energy Fuels
,
31
(
10
), pp.
10479
10489
.
29.
Rui
,
Z.
,
Han
,
G.
,
Zhang
,
H.
,
Wang
,
S.
,
Pu
,
H.
, and
Ling
,
K.
,
2017
, “
A New Model to Evaluate Two Leak Points in a Gas Pipeline
,”
J. Natural Gas Sci. Eng.
,
46
, pp.
491
497
.
30.
Guo
,
T. K.
,
Zhang
,
S. C.
,
Ge
,
H. K.
,
Wang
,
X. Q.
,
Lei
,
X.
, and
Xiao
,
B.
,
2015
, “
A New Method for Evaluation of Fracture Network Formation Capacity of Rock
,”
Fuel
,
140
, pp.
778
787
.
31.
Yuan
,
B.
,
Su
,
Y.
,
Moghanloo
,
R. G.
,
Wang
,
W.
, and
Shang
,
Y.
,
2015
, “
A New Analytical Multi-Linear Solution for Gas Flow Toward Fractured Horizontal Wells With Different Fracture Intensity
,”
J. Natural Gas Sci. Eng.
,
23
, pp.
227
238
.
32.
Rui
,
Z.
,
Li
,
C.
,
Peng
,
P.
,
Ling
,
K.
,
Chen
,
G.
,
Zhou
,
X.
, and
Chang
,
H.
,
2017
, “
Development of Industry Performance Metrics for Offshore Oil and Gas Project
,”
J. Natural Gas Sci. Eng.
,
39
, pp.
44
53
.
33.
Cui
,
G.
,
Ren
,
S.
,
Ezekiel
,
J.
,
Zhang
,
L.
, and
Wang
,
H.
,
2018
, “
The Influence of Complicated Fluid-Rock Interactions on the Geothermal Exploitation in the CO2 Plume Geothermal System
,”
Appl. Energy
, in press.
34.
Cui
,
K.
,
Qian
,
Y.
,
Jeon
,
I.
,
Anisimov
,
A.
,
Matsuo
,
Y.
, and
Maruyama
,
S.
,
2017
, “
Scalable and Solid-State Redox Functionalization of Transparent Single-Walled Carbon Nanotube Films for Highly Efficient and Stable Solar Cells
,”
Adv. Energy Mater.
,
7
(
18
), p.
1700449
.
35.
Sun
,
J.
,
Gamboa
,
E. S.
, and
Schechter
,
D.
,
2016
, “
An Integrated Workflow for Characterization and Simulation of Complex Fracture Networks Utilizing Microseismic and Horizontal Core Data
,”
J. Natural Gas Sci. Eng.
,
34
, pp.
1347
1360
.
36.
Carroll
,
M. M.
, and
Katsube
,
N.
,
1983
, “
The Role of Terzaghi Effective Stress in Linearly Elastic Deformation
,”
ASME J. Energy Resour. Technol.
,
105
(
4
), pp.
509
511
.
37.
Seibi
,
A. C.
,
Pervez
,
T.
,
Karrech
,
A.
, and
Al-Hiddabi
,
S.
,
2006
, “
Coupled Stress and Pressure Waves Propagation in an Elastic Solid Tube Submerged in Fluids
,”
ASME J. Energy Resour. Technol.
,
128
(
4
), pp.
247
256
.
38.
Wang
,
L.
,
Wang
,
S.
,
Zhang
,
R.
,
Wang, C.
,
Xiong, Y.
,
Zheng, X.
,
Li, S.
,
Jin, K.
, and
Rui, Z.
,
2016
, “
Review of Multi-Scale and Multi-Physical Simulation Technologies for Shale and Tight Gas Reservoirs
,”
J. Natural Gas Sci. Eng.
,
37
, pp.
560
578
.
39.
Zhang
,
L.
,
Pu
,
C. S.
,
Cui
,
S. X.
,
Nasir
,
K.
, and
Liu
,
Y.
,
2016
, “
Experimental Study on a New Type of Water Shutoff Agent Used in Fractured Low Permeability Reservoir
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012907
.
40.
Yuan
,
H.
,
Sarica
,
C.
, and
Brill
,
J. P.
,
1999
, “
Effect of Perforation Density on Single Phase Liquid Flow Behavior in Horizontal Wells
,”
SPE Prod. Facil.
,
14
(
3
), pp.
603
612
.
41.
Yu
,
J.
,
Shen
,
F.
, and
Gu
,
Q.
,
2011
, “
Influence of Perforation Parameters on Hydraulic Fracturing of Fracture Pressure in Horizontal Well
,”
Pet. Geol. Recovery Effic.
,
18
(
1
), pp.
105
106
.
42.
Hu
,
J.
,
Zhang
,
C.
,
Yu
,
Y.
, and
Chen
,
Z.
,
2016
, “
Fractured Horizontal Well Productivity Prediction in Tight Oil Reservoirs
,”
J. Pet. Sci. Eng.
,
151
, pp.
159
168
.
43.
Guo
,
T.
,
Zhang
,
S.
,
Zou
,
Y.
, and
Xiao
,
B.
,
2015
, “
Numerical Simulation of Hydraulic Fracture Propagation in Shale Gas Reservoir
,”
J. Natural Gas Sci. Eng.
,
26
, pp.
847
856
.
44.
Zeng
,
J.
,
Wang
,
X.
,
Guo
,
J.
, and
Zeng
,
F.
,
2017
, “
Composite Linear Flow Model for Multi-Fractured Horizontal Wells in Heterogeneous Shale Reservoir
,”
J. Natural Gas Sci. Eng.
,
38
, pp.
527
548
.
45.
Guo
,
J.
,
Wang
,
J.
,
Liu
,
Y.
,
Chen
,
Z.
, and
Zhu
,
H.
,
2017
, “
Analytical Analysis of Fracture Conductivity for Sparse Distribution of Proppant Packs
,”
J. Geophys. Eng.
,
14
(
3
), p.
599
.
You do not currently have access to this content.