In order to generate a new fracture far away from the original fracture in refracturing and effectively enhancing productivity, the technology of hydraulic refracturing guided by directional boreholes was presented. The effects of induced stress generated by the original hydraulic fracture, fracturing fluid percolation effect, wellbore internal pressure, and in situ stress on stress field distribution around wellbore were considered to obtain a fracture initiation model of hydraulic refracturing guided by two directional boreholes. The variation of maximum principal stress (σmax) under different conditions was investigated. The researches show that the directional boreholes result in a “sudden change region” of maximum principal stress around wellbore, reflecting dual stresses effects from vertical wellbore and directional boreholes on the rock. The width of sudden change region decreases as the distance from wellbore increases. Due to sudden change region, the refracturing fracture tends to initiate around directional boreholes. Whether the new fracture initiates and propagates along directional boreholes depends on comprehensive effect of borehole azimuth, borehole diameter, borehole spacing, horizontal stress difference, height, and net pressure of original fracture. The specific initiation position can be calculated using the theoretical model proposed in this paper. Affected by induced stress of the original fracturing, the rock tends to be compressed during refracturing, i.e., increased fracturing pressure. Sensitivity analysis with “extended Fourier amplitude sensitivity test (EFAST)” method shows the initiation of new fracture is mainly controlled by directional boreholes parameters and has little relation with in situ stress and parameters of original fracture. The influence rank of each parameter is as follows: borehole diameter > borehole spacing > original fracture net stress > borehole azimuth > horizontal stress difference > original fracture height. During design of refracturing, in order to better play the role of directional boreholes, and create a new fracture far away from original fracture, the optimal design is conducted with measures of optimizing boreholes azimuth, increasing borehole diameter and reducing borehole spacing if conditions permit. The research provides the theoretical basis for hydraulic refracturing guided by directional boreholes, which is helpful for the design of fracturing construction programs.

References

References
1.
Zhang
,
G. Q.
, and
Chen
,
M.
,
2010
, “
Dynamic Fracture Propagation in Hydraulic Re-Fracturing
,”
J. Pet. Sci. Eng.
,
70
(
3–4
), pp.
266
272
.
2.
Warpinski
,
N. R.
, and
Branagan
,
P. T.
,
1989
, “
Altered-Stress Fracturing
,”
J. Pet. Technol.
,
41
(
9
), pp.
990
997
.
3.
Guo
,
J.
,
Luo
,
B.
,
Lu
,
C.
,
Lai
,
J.
, and
Ren
,
J.
,
2017
, “
Numerical Investigation of Hydraulic Fracture Propagation in a Layered Reservoir Using the Cohesive Zone Method
,”
Eng. Fract. Mech.
,
186
, pp.
195
207
.
4.
Guo
,
T.
,
Zhang
,
S.
,
Zou
,
Y.
, and
Xiao
,
B.
,
2015
, “
Numerical Simulation of Hydraulic Fracture Propagation in Shale Gas Reservoir
,”
J. Natural Gas Sci. Eng.
,
26
, pp.
847
856
.
5.
Guo
,
J.
,
Wang
,
J.
,
Liu
,
Y.
,
Chen
,
Z.
, and
Zhu
,
H.
,
2017
, “
Analytical Analysis of Fracture Conductivity for Sparse Distribution of Proppant Packs
,”
J. Geophys. Eng.
,
14
(
3
), pp.
599
610
.
6.
Zhou
,
D. S.
,
Zheng
,
P.
,
Peng
,
J.
, and
He
,
P.
,
2015
, “
Induced Stress and Interaction of Fractures During Hydraulic Fracturing in Shale Formation
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062902
.
7.
Hu
,
J.
,
Yang
,
S.
,
Fu
,
D.
,
Rui
,
R.
,
Yu
,
Y. L.
, and
Chen
,
Z. X.
,
2016
, “
Rock Mechanics of Shear Rupture in Shale Gas Reservoir
,”
J. Natural Gas Sci. Eng.
,
36
(Pt. A), pp.
943
949
.
8.
Osholake
,
T.
,
Wang
,
J. Y.
, and
Ertekin
,
T.
,
2012
, “
Factors Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013402
.
9.
Guo
,
T. K.
,
Li
,
Y. C.
,
Ding
,
Y.
,
Qu
,
Z. Q.
, and
Gai
,
N. C.
,
2017
, “
Evaluation of Acid Fracturing Treatments in Shale Formation
,”
Energy Fuels
,
31
(
10
), pp.
10479
10489
.
10.
Gong
,
D. G.
,
Qu
,
Z. Q.
,
Guo
,
T. K.
,
Tian
,
Y.
, and
Tian
,
K. H.
,
2016
, “
Variation Rules of Fracture Initiation Pressure and Fracture Starting Point of Hydraulic Fracture in Radial Well
,”
J. Pet. Sci. Eng.
,
140
, pp.
41
56
.
11.
Guo
,
T. K.
,
Qu
,
Z. Q.
,
Gong
,
D. G.
,
Lei
,
X.
, and
Liu
,
M.
,
2016
, “
Numerical Simulation of Directional Propagation of Hydraulic Fracture Guided by Vertical Multi-Radial Boreholes
,”
J. Natural Gas Sci. Eng.
,
35
(Pt. A), pp.
175
188
.
12.
Wang
,
S.
,
Feng
,
Q.
,
Zha
,
M.
,
Javadpour
,
F.
, and
Hu
,
Q.
,
2018
, “
Supercritical Methane Diffusion in Shale Nanopores: Effects of Pressure, Mineral Types, and Moisture Content
,”
Energy Fuels
,
32
(
1
), pp.
169
180
.
13.
Sun
,
J.
,
Gamboa
,
E.
, and
Schechter
,
D.
,
2016
, “
An Integrated Workflow for Characterization and Simulation of Complex Fracture Networks Utilizing Microseismic and Horizontal Core Data
,”
J. Natural Gas Sci. Eng.
,
34
, pp.
1347
1360
.
14.
Wang
,
L.
,
Wang
,
S.
, and
Zhang
,
R.
,
2017
, “
Review of Multi-Scale and Multi-Physical Simulation Technologies for Shale and Tight Gas Reservoir
,”
J. Natural Gas Sci. Eng.
,
37
, pp.
560
578
.
15.
Yildiz
,
T.
,
2002
, “
Impact of Perforating on Well Performance and Cumulative Production
,”
ASME J. Energy Resour. Technol.
,
124
(
3
), pp.
163
172
.
16.
Li
,
Y.
,
Jia
,
D.
,
Peng
,
J.
,
Fu
,
C.
, and
Zhang
,
J.
,
2017
, “
Evaluation Method of Rock Brittleness Based on Statistical Constitutive Relations for Rock Damage
,”
J. Pet. Sci. Eng.
,
153
, pp.
123
132
.
17.
Guo
,
T. K.
,
Zhang
,
S. C.
,
Ge
,
H. K.
,
Wang
,
X. Q.
,
Lei
,
X.
, and
Xiao
,
B.
,
2015
, “
A New Method for Evaluation of Fracture Network Formation Capacity of Rock
,”
Fuel
,
140
, pp.
778
787
.
18.
Rui
,
Z.
,
Wang
,
X.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213
, pp.
76
91
.
19.
Rui
,
Z.
,
Lu
,
J.
,
Zhang
,
Z.
,
Guo
,
R.
,
Ling
,
K.
,
Zhang
,
R.
, and
Patil
,
S.
,
2017
, “
A Quantitative Oil and Gas Reservoir Evaluation System for Development
,”
J. Natural Gas Sci. Eng.
,
42
, pp.
31
39
.
20.
Rui
,
Z.
,
Peng
,
F.
,
Chang
,
H.
,
Ling
,
K.
,
Chen
,
G.
, and
Zhou
,
X.
,
2017
, “
Investigation Into the Performance of Oil and Gas Projects
,”
J. Natural Gas Sci. Eng.
,
38
, pp.
12
20
.
21.
Rui
,
Z.
,
Li
,
C.
,
Peng
,
P.
,
Ling
,
K.
,
Chen
,
G.
,
Zhou
,
X.
, and
Chang
,
H.
,
2017
, “
Development of Industry Performance Metrics for Offshore Oil and Gas Project
,”
J. Natural Gas Sci. Eng.
,
39
, pp.
44
53
.
22.
Karacan
,
C. O.
,
Grader
,
A. S.
, and
Halleck
,
P. M.
,
2001
, “
Mapping of Permeability Damage Around Perforation Tunnels
,”
ASME J. Energy Resour. Technol.
,
123
(
3
), pp.
205
213
.
23.
Zeng
,
J.
,
Wang
,
X.
,
Guo
,
J.
, and
Zeng
,
F.
,
2017
, “
Composite Linear Flow Model for Multi-Fractured Horizontal Wells in Heterogeneous Shale Reservoir
,”
J. Natural Gas Sci. Eng.
,
38
, pp.
527
548
.
24.
Ren
,
Z.
,
Wu
,
X.
,
Liu
,
D.
,
Rui
,
R.
,
Guo
,
W.
, and
Chen
,
Z.
,
2016
, “
Semi-Analytical Model of the Transient Pressure Behavior of Complex Fracture Networks in Tight Oil Reservoirs
,”
J. Natural Gas Sci. Eng.
,
35
(Pt. A), pp.
497
508
.
25.
Ji
,
W.
,
Song
,
U.
,
Meng
,
M.
, and
Huang
,
H.
,
2017
, “
Pore Characterization of Isolated Organic Matter From High Matured Gas Shale Reservoir
,”
Int. J. Coal Geology
,
174
, pp.
31
40
.
26.
Liu
,
Y.
, and
Liu
,
X.
,
2013
, “
Crack-Oriented Mechanism and Method for Hydraulic Fracturing in Coal Mine
,”
Disaster Adv.
,
6
, pp.
59
66
.
27.
Lekontsev
,
Y. M.
, and
Sazhin
,
P. V.
,
2008
, “
Application of the Directional Hydraulic Fracturing at Berezovskaya Mine
,”
J. Min. Sci.
,
44
(
3
), pp.
253
258
.
28.
Ahn
,
C. H.
,
Dilmore
,
R.
, and
Wang
,
J. Y.
,
2016
, “
Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoirs: A Three-Dimensional, Two-Phase Model
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012903
.
29.
Zhang
,
F.
,
Wang
,
Z.
,
Wu
,
F.
,
Gao
,
X.
, and
Luo
,
R.
,
2012
, “
Dynamic Analysis on Hydrocarbon Migration of Accumulation Periods in Low Permeability-Tight Sandstone Reservoir
,”
J. China Univ. Pet. (Ed. Natural Sci.)
,
36
(
4
), pp.
32
38
.
30.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2014
, “
Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042905
.
31.
Hu
,
J.
, and
Zhang
,
C.
,
2017
, “
Fractured Horizontal Well Productivity Prediction in Tight Oil Reservoirs
,”
J. Pet. Sci. Eng.
,
151
, pp.
159
168
.
32.
Zhao
,
X.
, and
Liao
,
X.
,
2016
, “
Case Studies on the CO2 Storage and EOR in Heterogeneous, Highly Water-Saturated, and Extra-Low Permeability Chinese Reservoirs
,”
J. Natural Gas Sci. Eng.
,
29
, pp.
275
283
.
33.
Rubin
,
M. B.
,
1983
, “
Experimental Study of Hydraulic Fracturing in an Impermeable Material
,”
ASME J. Energy Resour. Technol.
,
105
(
2
), pp.
116
124
.
34.
Cui
,
G.
,
Ren
,
S.
,
Ezekiel
,
J.
,
Zhang
,
L.
, and
Wang
,
H.
,
2017
, “
The Influence of Complicated Fluid-Rock Interactions on the Geothermal Exploitation in the CO2 Plume Geothermal System
,”
Appl. Energy
, in press.
35.
Rui
,
Z.
,
Han
,
G.
,
Zhang
,
H.
,
Wang
,
S.
,
Pu
,
H.
, and
Ling
,
K.
,
2017
, “
A New Model to Evaluate Two Leak Points in a Gas Pipeline
,”
J. Natural Gas Sci. Eng.
,
46
, pp.
491
497
.
36.
He
,
J.
, and
Ling
,
K.
,
2016
, “
A New Method to Determine Biot's Coefficients of Bakken Samples
,”
J. Natural Gas Sci. Eng.
,
35
(Pt. A), pp.
259
264
.
37.
Chen
,
Z.
, and
Economides
,
M. J.
,
1995
, “Fracturing Pressure and Near-Well Fracture Geometry of Arbitrarily Oriented and Horizontal Wells,” SPE Annual Technical Conference and Exhibition, Dallas, TX, Oct. 22–25,
SPE
Paper No. SPE-30531-MS.
38.
Wolfgang
,
E. J. D.
,
1998
, “Hydraulic Fracture-Initiation in Deviated or Horizontal Openhole Wellbores,” SPE/ISRM Rock Mechanics in Petroleum Engineering, Trondheim, Norway, July 8–10,
SPE
Paper No. SPE-47386-MS.
39.
Wang
,
H.
,
Li
,
M.
, and
Shang
,
X. F.
,
2016
, “
Current Developments on Micro-Seismic Data Processing
,”
J. Natural Gas Sci. Eng.
,
32
, pp.
521
537
.
40.
Rui
,
Z.
,
Metz
,
P. A.
,
Chen
,
G.
,
Zhou
,
X.
, and
Wang
,
X.
,
2012
, “
Regressions Allow Development of Compressor Cost Estimation Models
,”
Oil Gas J.
,
110
(
1
), pp.
110
115
.
41.
Haimson
,
B.
, and
Fairhurst
,
C.
,
1967
, “
Initiation and Extension of Hydraulic Fractures in Rocks
,”
Soc. Pet. Eng. J.
,
7
(
3
), pp.
310
318
.
42.
Hossain
,
M. M.
,
Rahman
,
M. K.
, and
Rahman
,
S. S.
,
1999
, “A Comprehensive Monograph for Hydraulic Fracture Initiation From Deviated Wellbores Under Arbitrary Stress Regimes,” SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, Apr. 20–22,
SPE
Paper No. SPE-54360-MS.
43.
Hossain
,
M. M.
,
Rahman
,
M. K.
, and
Rahman
,
S. S.
,
2000
, “
Hydraulic Fracture Initiation and Propagation: Roles of Wellbore Trajectory, Perforation and Stress Regimes
,”
J. Pet. Sci. Eng.
,
27
(
3–4
), pp.
129
149
.
44.
Crosby
,
D. G.
,
Rahman
,
M. M.
,
Rahman
,
M. K.
, and
Rahman
,
S. S.
,
2002
, “
Single and Multiple Transverse Fracture Initiation From Horizontal Wells
,”
J. Pet. Sci. Eng.
,
35
(
3–4
), pp.
191
204
.
45.
Fallahzadeh
,
S. H.
,
Shadizadeh
,
S. R.
, and
Pourafshary
,
P.
,
2010
, “Dealing With the Challenges of Hydraulic Fracture Initiation in Deviated-Cased Perforated Boreholes,” Trinidad and Tobago Energy Resources Conference, Port of Spain, Trinidad, June 27–30,
SPE
Paper No. SPE-132797-MS.
46.
Huang
,
J. S.
,
Griffiths
,
D. V.
, and
Wong
,
S. W.
,
2012
, “
Initiation Pressure, Location and Orientation of Hydraulic Fracture
,”
Int. J. Rock Mech. Min. Sci.
,
49
, pp.
59
67
.
47.
Guo
,
T. K.
,
Liu
,
B. Y.
,
Qu
,
Z. Q.
,
Gong
,
D. G.
, and
Lei
,
X.
,
2017
, “
Study on Initiation Mechanisms of Hydraulic Fracture Guided by Vertical Multi-Radial Boreholes
,”
Rock Mech. Rock Eng.
,
50
(
7
), pp.
1767
1785
.
48.
Sneddon
,
I. N.
, and
Elliott
,
H. A.
,
1946
, “
The Opening of a Griffith Crack Under Internal Pressure
,”
Q. Appl. Math.
,
4
(
3
), pp.
262
267
.
49.
Wang
,
H.
,
Guo
,
T.
, and
Shang
,
X. F.
,
2015
, “
A Method to Determine the Strike of Interface Outside of Borehole by Monopole Borehole Acoustic Reflections
,”
J. Pet. Sci. Eng.
,
133
, pp.
304
312
.
50.
Lubinski
,
A.
,
1954
, “
The Theory of Elasticity for Porous Bodies Displaying a Strong Pore Structure
,”
Second U.S. National Congress of Applied Mechanics
, Ann Arbor, MI, June 14–18, pp.
247
256
.
51.
Li
,
Y. P.
,
Wang
,
H.
,
Fehler
,
M.
, and
Fu
,
Y. Q.
,
2017
, “
Wavefield Characterization of Perforation Shot Signals From a Shale Gas Reservoir
,”
Phys. Earth Planet. Inter.
,
267
, pp.
31
40
.
52.
He
,
Y. W.
,
Cheng
,
S. Q.
,
Rui
,
Z. H.
,
Qin
,
J. Z.
,
Fu
,
L.
,
Shi
,
J. G.
,
Wang
,
Y.
,
Li
,
D. Y.
,
Patil
,
S.
,
Yu
,
H. Y.
, and
Lu
,
J.
,
2018
, “
An Improved Rate-Transient Analysis Model of Multi-Fractured Horizontal Wells With Non-Uniform Hydraulic Fracture Properties
,”
Energies
,
11
(
2
), p.
393
.
53.
He
,
Y. W.
,
Cheng
,
S. Q.
,
Li
,
S.
,
Huang
,
Y.
,
Qin
,
J. Z.
,
Hu
,
L. M.
, and
Yu
,
H. Y.
,
2017
, “
A Semianalytical Methodology to Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir
,”
SPE J.
,
22
(
3
), pp.
924
939
.
54.
Saltelli
,
A.
,
1999
, “
Sensitivity Analysis: Could Better Methods Be Used?
,”
J. Geophys. Res. Atmos.
,
104
(
3
), pp.
3789
3793
.
You do not currently have access to this content.