In an earlier publication (Jupudi et al., 2016, “Application of High Performance Computing for Simulating Cycle-to-Cycle Variation in Dual-Fuel Combustion Engines,” SAE Paper No. 2016-01-0798), the authors compared numerical predictions of the mean cylinder pressure of diesel and dual-fuel combustion, to that of measured pressure data from a medium-speed, large-bore engine. In these earlier comparisons, measured data from a flush-mounted in-cylinder pressure transducer showed notable and repeatable pressure oscillations which were not evident in the mean cylinder pressure predictions from computational fluid dynamics (CFD). In this paper, the authors present a methodology for predicting and reporting the local cylinder pressure consistent with that of a measurement location. Such predictions for large-bore, medium-speed engine operation demonstrate pressure oscillations in accordance with those measured. The temporal occurrences of notable pressure oscillations were during the start of combustion and around the time of maximum cylinder pressure. With appropriate resolutions in time steps and mesh sizes, the local cell static pressure predicted for the transducer location showed oscillations in both diesel and dual-fuel combustion modes which agreed with those observed in the experimental data. Fast Fourier transform (FFT) analysis on both experimental and calculated pressure traces revealed that the CFD predictions successfully captured both the amplitude and frequency range of the oscillations. Resolving propagating pressure waves with the smaller time steps and grid sizes necessary to achieve these results required a significant increase in computer resources.

References

References
1.
Houountalas
,
D. T.
, and
Papagiannakis
,
R. G.
,
2001
, “
A Simulation Model for the Combustion Process of Natural Gas Engines With Pilot Diesel Fuel as an Ignition Source
,”
SAE
Paper No. 2001-01-1245.
2.
Redtenbacher
,
C.
,
Kiesling
,
C.
,
Malin
,
M.
,
Wimmer
,
A.
,
Pastor
,
J. V.
, and
Pinotti
,
M.
,
2017
, “
Potential and Limitations of Dual Fuel Operation of High Speed Large Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032205
.
3.
Mitchell
,
R. H.
, and
Olsen
,
D. B.
,
2017
, “
Extending Substitution Limits of a Diesel–Natural Gas Dual Fuel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052202
.
4.
Nithyanandan
,
K.
,
Zhang
,
J.
,
Li
,
Y.
,
Meng
,
X.
,
Donahue
,
R.
,
Lee
,
C.
, and
Dou
,
H.
,
2016
, “
Diesel-Like Efficiency Using Compressed Natural Gas/Diesel Dual-Fuel Combustion
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052201
.
5.
AVL, 2018, “QC34D,” AVL, Graz, Austria, accessed Mar. 24, 2018, https://www.avl.com/-/QC34D
6.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2013
,
CONVERGE (Version 2.1) Manual
,
Convergent Science
,
Madison, WI
.
7.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
8.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), pp.
1510
1520
.
9.
Pomraning
,
E.
,
Richards
,
K.
, and
Senecal
,
P. K.
,
2014
, “
Modeling Turbulent Combustion Using a RANS Model, Detailed Chemistry, and Adaptive Mesh Refinement
,”
SAE
Paper No. 2014-01-1116.
10.
Som
,
S.
,
Longman
,
D.
,
Aithal
,
S.
,
Bair
,
R.
,
Garcia
,
M.
,
Quan
,
S.
,
Richards
,
K. J.
,
Senecal
,
P. K.
,
Shethaji
,
T.
, and
Weber
,
M.
,
2013
, “
A Numerical Investigation on Scalability and Grid Convergence of Internal Combustion Engine Simulations
,”
SAE
Paper No. 2013-01-1095.
11.
Scarcelli
,
R.
,
Sevik
,
J.
,
Wallner
,
T.
,
Richards
,
K.
,
Pomraning
,
E.
, and
Senecal
,
P. K.
,
2015
, “
Capturing Cyclic Variability in EGR Dilute SI Combustion Using Multi-Cycle RANS
,”
ASME
Paper No. ICEF2015-1045.
12.
Wang
,
Z.
,
Scarcelli
,
R.
,
Som
,
S.
,
McConnell
,
S.
,
Salman
,
N.
,
Zhu
,
Y.
,
Hardman
,
K.
,
Freeman
,
K.
,
Reese
,
R.
,
Senecal
,
P. K.
,
Raju
,
M.
, and
Givler
,
S.
,
2013
, “
Multi-Dimensional Modeling and Validation of Combustion in a High-Efficiency Dual-Fuel Light-Duty Engine
,”
SAE
Paper No. 2013-01-1091.
13.
Wijeyakulasuriya
,
S. D.
,
Jupudi
,
R. S.
,
Givler
,
S.
,
Primus
,
R. J.
,
Klingbeil
,
A. E.
,
Raju
,
M.
, and
Raman
,
A.
,
2015
, “
Multidimensional Modeling and Validation of Dual-Fuel Combustion in a Large Bore Medium Speed Diesel Engine
,”
ASME
Paper No. ICEF2015-1077.
14.
Babajimopoulos
,
A. D.
,
Assanis
,
D. N.
,
Flowers
,
D. L.
,
Aceves
,
S. M.
, and
Hessel
,
R. P.
,
2005
, “
A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model With Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
6
(
5
), pp.
497
512
.
15.
Lucchini
,
T.
,
D'Errico
,
G. D.
,
Ettore
,
D.
, and
Ferrari
,
G.
,
2009
, “
Numerical Investigation of Non-Reacting and Reacting Diesel Sprays in Constant-Volume Vessels
,”
SAE
Paper No. 2009-01-1971.
16.
Raju
,
M.
,
Wang
,
M.
,
Dai
,
M.
,
Piggott
,
W.
, and
Flowers
,
D. L.
,
2012
, “
Acceleration of Detailed Chemical Kinetics Using Multi-Zone Modeling for CFD in Internal Combustion Engine Simulations
,”
SAE
Paper 2012-01-0135.
17.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Anders
,
J. W.
,
Weber
,
M. R.
,
Gehrke
,
C. R.
,
Polonowski
,
C. J.
, and
Mueller
,
C. J.
,
2014
, “
Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments
,”
ASME J. Eng. Gas Turbines Power
,
136
(
11
), p.
111505
.
18.
Reitz
,
R. D.
, and
Diwakar
,
R.
,
1987
, “
Structure of High-Pressure Fuel Sprays
,”
SAE
Paper No. 870598.
19.
Senecal
,
P. K.
,
Richards
,
K. J.
,
Pomraning
,
E.
,
Yang
,
T.
,
Dai
,
M. Z.
,
McDavid
,
R. M.
,
Patterson
,
M. A.
,
Hou
,
S.
, and
Shetaji
,
T.
,
2007
, “
A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations
,”
SAE
Paper No. 2007-01-0159.
20.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.
21.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
, and
Som
,
S.
,
2014
, “
Grid-Convergent Spray Models for Internal Combustion Engine Computational Fluid Dynamics Simulations
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012204
.
22.
Jupudi
,
R. S.
,
Finney
,
C. E. A.
,
Primus
,
R. J.
,
Wijeyakulasuriya
,
S. D.
,
Klingbeil
,
A. E.
,
Tamma
,
B.
, and
Stoyanov
,
M. K.
,
2016
, “
Application of High Performance Computing for Simulating Cycle-to-Cycle Variation in Dual-Fuel Combustion Engines
,”
SAE
Paper No. 2016-01-0798.
23.
Cooley
,
J. W.
, and
Tukey
,
J. W.
,
1965
, “
An Algorithm for the Machine Calculation of Complex Fourier Series
,”
Math. Comput.
,
19
(
90
), pp.
297
301
.
24.
Frigo
,
M.
, and
Johnson
,
S. G.
,
1998
, “
FFTW: An Adaptive Software Architecture for the FFT
,” Intemational Conference on Acoustics, Speech and Signal Processing (
ICASSP
), Seattle, WA, May 12–15, pp.
1381
1384
.
You do not currently have access to this content.