A mixed mode combustion strategy with a premixed compression ignition (PCI) combustion event and a mixing controlled load extension injection was investigated in the current study. Computational fluid dynamics (CFD) modeling was used to perform a full factorial design of experiments (DOE) to study the effects of premixed fuel fraction, load extension injection timing, and exhaust gas recirculation (EGR). The goal of the study was to identify a feasible operating space and demonstrate a pathway to enable high-load operation with the mixed mode combustion strategy. The gross-indicated efficiency (GIE) increased with premix fraction, but the maximum premix fraction was constrained by pressure rise rate which confined the feasible operating space to a premix fuel mass range of 70–80%. Injecting part of the premixed fuel as a stratified injection relieved the pressure rise rate constraint considerably through in-cylinder equivalence ratio stratification. This allowed operation with premix fuel mass of 70% and higher and EGR rates less than 40% which resulted in improved GIE of the late cycle injection cases. It was also identified that by targeting the fuel from the stratified injection into the squish region, there is improved oxygen availability in the bowl for the load extension injection, which resulted in reduced soot emissions. This allowed the load extension injection to be brought closer to top dead center while meeting the soot constraint, which further improved the GIE. Finally, the results from the study were used to demonstrate high-load operation at 20 bar and 1300 rev/min.

References

References
1.
Kalghatgi
,
G.
,
Risberg
,
P.
, and
Angstrom
,
H.
,
2007
, “
Partially Pre-Mixed Auto-Ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison With Diesel Fuel
,”
SAE
Paper No. 2007-01-0006.
2.
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2009
, “
Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine With Gasoline for Low Emissions
,”
SAE
Paper No. 2009-01-1442.
3.
Sellnau
,
M.
,
Sinnamon
,
J.
,
Hoyer
,
K.
, and
Husted
,
H.
,
2012
, “
Full-Time Gasoline Direct-Injection Compression Ignition (GDCI) for High Efficiency and Low NOx and PM
,”
SAE Int. J. Engines
,
5
(
2
), pp.
300
314
.
4.
Kokjohn
,
S. L.
, and
Reitz
,
R. D.
,
2010
, “
An Investigation of Charge Preparation Strategies for Controlled PPCI Combustion Using a Variable Pressure Injection System
,”
Int. J. Eng. Res.
,
11
(
4
), pp.
257
282
.
5.
Shibata
,
G.
, and
Urushihara
,
T.
,
2009
, “
Realization of Dual Phase High Temperature Heat Release Combustion of Base Gasoline Blends From Oil Refineries and a Study of HCCI Combustion Processes
,”
SAE Int. J. Engines
,
2
(
1
), pp.
145
163
.
6.
Sjöberg
,
M.
, and
Dec
,
J.
,
2007
, “
EGR and Intake Boost for Managing HCCI Low-Temperature Heat Release Over Wide Ranges of Engine Speed
,”
SAE Paper No. 2007-01-0051.
7.
Benajes, J.
,
Pastor, V. J.
,
Garcia, A.
, and
Monsalve-Serrano, J.
, 2015, “
The Potential of RCCI Concept to Meet EURO VI NOx Limitation and Ultra-Low Soot Emissions in a Heavy-Duty Engine Over the Whole Engine Map
,”
Fuel
,
159
, pp. 952–961.
8.
Walker
,
R.
,
Wissink
,
M.
,
DelVescovo
,
D.
, and
Reitz
,
R.
,
2015
, “
Natural Gas for High Load Dual-Fuel Reactivity Controlled Compression Ignition in Heavy-Duty Engines
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042202
.
9.
Nord
,
A.
,
Hwang
,
J.
, and
Northrop
,
W.
,
2016
, “
Emissions From a Diesel Engine Operating in a Dual-Fuel Mode Using Port-Fuel Injection of Heated Hydrous Ethanol
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022204
.
10.
Dec
,
J.
,
Yang
,
Y.
,
Dernotte
,
J.
, and
Ji
,
C.
,
2015
, “
Effects of Gasoline Reactivity and Ethanol Content on Boosted, Premixed and Partially Stratified Low-Temperature Gasoline Combustion (LTGC)
,”
SAE Int. J. Engines
,
8
(
3
), pp.
935
955
.
11.
Klos
,
D.
, and
Kokjohn
,
S. L.
,
2015
, “
Investigation of the Sources of Combustion Instability in Low-Temperature Combustion Engines Using Response Surface Models
,”
Int. J. Eng. Res.
,
16
(
3
), pp.
419
440
.
12.
Reitz
,
R. D.
,
Hanson
,
R.
,
Splitter
,
D.
, and
Kokjohn
,
S. L.
,
2013
, “Engine Combustion Control Via Fuel Reactivity Stratification,” U.S. Patent No.
US8616177
.
13.
Kokjohn
,
S. L.
,
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R. D.
,
2010
, “
Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending
,”
SAE Int. J. Engines
,
2
(
2
), pp.
24
39
.
14.
Kokjohn
,
S. L.
, and
Reitz
,
R. D.
,
2009
, “
A Modeling Study of Charge Preparation in a HCCI Engine Using a Variable Pressure Pulse (VPP) Injection System and Optimized PRF Blends
,”
International Conference on Liquid Atomization and Spray Systems
, Vail, CO, July 26–30, pp. 1–6.
15.
Kokjohn
,
S. L.
, and
Reitz
,
R. D.
,
2010
, “
Characterization of Dual Fuel PCCI Combustion in a Light-Duty Engine
,”
International Multidimensional Engine Modeling User's Group Meeting
, Detroit, MI, Apr. 12.
16.
Wu
,
Y.
, and
Reitz
,
R.
,
2015
, “
Effects of Exhaust Gas Recirculation and Boost Pressure on Reactivity Controlled Compression Ignition Engine at High Load Operating Conditions
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032210
.
17.
Lim
,
J. H.
, and
Reitz
,
R. D.
,
2014
, “
High Load (21 Bar IMEP) Dual Fuel RCCI Combustion Using Dual Direct Injection
,”
ASME J. Eng. Gas Turbines Power
,
136
(10), p. 101514.
18.
Wissink
,
M.
, and
Reitz
,
R. D.
,
2015
, “
Direct Dual Fuel Stratification, a Path to Combine the Benefits of RCCI and PPC
,”
SAE Int. J. Engines
,
8
(
2
), pp.
878
889
.
19.
Kavuri
,
C.
, and
Kokjohn
,
S. L.
,
2016
, “
Investigating Air Handling Requirements of High Load Low Speed Reactivity Controlled Compression Ignition (RCCI) Combustion
,”
SAE
Paper No. 2016-01-0782.
20.
Kavuri
,
C.
,
Tiry
,
M.
,
Paz
,
J.
, and
Kokjohn
,
S. L.
,
2016
, “
Experimental and Computational Investigation of Soot Production From a Premixed Compression Ignition Engine Using a Load Extension Injection
,”
Int. J. Eng. Res.
,
18
(
5–6
), pp.
573
590
.
21.
Amsden
,
A. A.
,
1999
, “KIVA-3V, Release 2, Improvement to KIVA-3V,” Los Alamos National Laboratory, Los Alamos, NM, Report No.
LA-13608-MS
.
22.
Perini
,
F.
,
Galligani
,
E.
, and
Reitz
,
R. D.
,
2012
, “
An Analytical Jacobian Approach to Sparse Reaction Kinetics for Computationally Efficient Combustion Modeling With Large Reaction Mechanisms
,”
Energy Fuels
,
26
(
8
), pp.
4804
4822
.
23.
Wang
,
H.
,
Reitz
,
R. D.
,
Yao
,
M.
,
Yang
,
B.
,
Jiao
,
Q.
, and
Qiu
,
L.
,
2013
, “
Development of an n-Heptane-n-Butanol-PAH Mechanism and Its Application for Combustion and Soot Prediction
,”
Combust. Flame
,
160
(
3
), pp.
504
519
.
24.
Hiroyasu
,
H.
, and
Kadota
,
T.
,
1976
, “
Models for Combustion and Formation of Nitric Oxide and Soot in DI Diesel Engines
,”
SAE
Paper No. 760129.
25.
Abani
,
N.
,
Munnanur
,
A.
, and
Reitz
,
R. D.
,
2008
, “
Reduction of Numerical Parameter Dependencies in Diesel Spray Models
,”
ASME J. Eng. Gas Turbines Power
,
130
(3), p. 032809.
26.
Abani
,
N.
,
Kokjohn
,
S. L.
,
Park
,
S. W.
,
Bergin, M.
,
Munnanur, A.
,
Ning, W.
,
Sun, Y.
, and
Reitz, R. D.
,
2008
, “
An Improved Spray Model for Reducing Numerical Parameters Dependencies in Diesel Engine CFD Simulations
,”
SAE
Paper No. 2008-01-0970.
27.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.
28.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG k–ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
29.
Munnanur
,
A.
,
2007
, “Droplet Collision Modeling in Multi-Dimensional Engine Spray Computations,” Ph.D. thesis, University of Wisconsin-Madison, Madison, WI.
30.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
2000
, “
A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model
,”
SAE
Paper No. 2000-01-0271.
31.
Wissink
,
M. L.
,
Lim
,
J. H.
,
Splitter
,
D. A.
,
Hanson
,
R. M.
, and
Reitz
,
R. D.
,
2012
, “
Investigation of Injection Strategies to Improve High Efficiency RCCI Combustion With Diesel and Gasoline Direct Injection
,”
ASME
Paper No. ICEF2012-92107.
32.
Kavuri
,
C.
,
Paz
,
J.
, and
Kokjohn
,
S. L.
,
2016
, “
A Comparison of Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) Strategies at High Load, Low Speed Conditions
,”
Energy Convers. Manage.
,
127
(
1
), pp.
324
341
.
33.
Kavuri
,
C.
,
Kokjohn
,
S. L.
,
Klos
,
D. T.
, and
Hou
,
D.
,
2016
, “
Blending the Benefits of Reactivity Controlled Compression Ignition and Gasoline Compression Ignition Combustion Using an Adaptive Fuel Injection System
,”
Int. J. Eng. Res.
,
17
(
8
), pp.
811
824
.
34.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
L. R.
, 2016, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics and Transport Processes
,” CERN, Geneva, Switzerland, accessed Mar. 19, 2018, https://zenodo.org/record/45206#.Wq-CEWe6adE
35.
Tiry
,
M.
,
2015
, “High Load Reactivity Controlled Compression Ignition (RCCI) Combustion,”
M.S. thesis
, University of Wisconsin-Madison, Madison, WI.
36.
Dempsey
,
A. B.
,
Curran
,
S. J.
, and
Wagner
,
R. M.
,
2016
, “
A Perspective on the Range of Gasoline Compression Ignition Combustion Strategies for High Engine Efficiency and Low NOx and Soot Emissions: Effects of In-Cylinder Fuel Stratification
,”
Int. J. Eng. Res.
,
17
(
8
), pp.
897
917
.
You do not currently have access to this content.