The interaction between hydrated bubble growth and multiphase flow dynamics is important in deepwater wellbore/pipeline flow. In this study, we derived a hydrate shell growth model considering the intrinsic kinetics, mass and heat transfer, and hydrodynamics mechanisms in which a partly coverage assumption is introduced for elucidating the synergy of bubble hydrodynamics and hydrate morphology. Moreover, a hydro-thermo-hydrate model is developed considering the intercoupling effects including interphase mass and heat transfer, and the slippage of hydrate-coated bubble. Through comparison with experimental data, the performance of proposed model is validated and evaluated. The model is applied to analyze the wellbore dynamics process of kick evolution during deepwater drilling. The simulation results show that the hydrate formation region is mainly near the seafloor affected by the fluid temperature and pressure distributions along the wellbore. The volume change and the mass transfer rate of a hydrated bubble vary complicatedly, because of hydrate formation, hydrate decomposition, and bubble dissolution (both gas and hydrate). Moreover, hydrate phase transition can significantly alter the void fraction and migration velocity of free gas in two aspects: (1) when gas enters the hydrate stability field (HSF), a solid hydrate shell will form on the gas bubble surface, and thereby, the velocity and void fraction of free gas can be considerably decreased; (2) the free gas will separate from solid hydrate and expand rapidly near the sea surface (outside the HSF), which can lead to an abrupt hydrostatic pressure loss and explosive development of the gas kick.

References

References
1.
Wong
,
K. V.
,
2014
, “
Need for Engineering Solutions to Problems Associated With Offshore Oil and Gas Production
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
034702
.
2.
Wu
,
H.
,
Du
,
Q.
,
Hou
,
J.
,
Li
,
J.
,
Gong
,
R.
,
Liu
,
Y.
, and
Li
,
Z.
,
2017
, “
Characterization and Prediction of Gas Breakthrough With Cyclic Steam and Gas Stimulation Technique in an Offshore Heavy Oil Reservoir
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032801
.
3.
Wang
,
Z.
,
Zhao
,
Y.
,
Sun
,
B.
,
Chen
,
L.
,
Zhang
,
J.
, and
Wang
,
X.
,
2016
, “
Modeling of Hydrate Blockage in Gas-Dominated Systems
,”
Energy Fuels
,
30
(
6
), pp.
4653
4666
.
4.
Ibraheem
,
S. O.
,
Adewumi
,
M. A.
, and
Savidge
,
J. L.
,
1998
, “
Numerical Simulation of Hydrate Transport in Natural Gas Pipeline
,”
ASME J. Energy Resour. Technol.
,
120
(
1
), pp.
20
26
.
5.
Mori
,
Y. H.
,
1998
, “
Clathrate Hydrate Formation at the Interface Between Liquid CO2 and Water Phases—A Review of Rival Models Characterizing “Hydrate Films
,”
Energy Convers. Manage.
,
39
(
15
), pp.
1537
1557
.
6.
Sun
,
C. Y.
,
Peng
,
B. Z.
,
Dandekar
,
A.
,
Ma
,
Q. L.
, and
Chen
,
G. J.
,
2010
, “
Studies on Hydrate Film Growth
,”
Annu. Rep. Sect. C: Phys. Chem.
,
106
, pp.
77
100
.
7.
Sloan
,
E. D.
, and
Koh
,
C. A.
,
2008
,
Clathrate Hydrates of Natural Gases
,
CRC Press
,
Boca Raton, FL
.
8.
Uddin
,
M.
,
Coombe
,
D.
,
Law
,
D.
, and
Gunter
,
B.
,
2006
, “
Numerical Studies of Gas Hydrate Formation and Decomposition in a Geological Reservoir
,”
ASME J. Energy Resour. Technol.
,
130
(
3
), p.
032501
.
9.
Egorov
,
A. V.
,
Nigmatulin
,
R. I.
, and
Rozhkov
,
A. N.
,
2014
, “
Transformation of Deep-Water Methane Bubbles Into Hydrate
,”
Geofluids
,
14
(
4
), pp.
430
442
.
10.
Yapa
,
P. D.
, and
Chen
,
F.
,
2004
, “
Behavior of Oil and Gas From Deepwater Blowouts
,”
J. Hydraul. Eng.
,
130
(
6
), pp.
540
553
.
11.
Zheng
,
L.
, and
Yapa
,
P. D.
,
2002
, “
Modeling Gas Dissolution in Deepwater Oil/Gas Spills
,”
J. Mar. Syst.
,
31
(
4
), pp.
299
309
.
12.
Topham
,
D. R.
,
1984
, “
The Formation of Gas Hydrates on Bubbles of Hydrocarbon Gases Rising in Seawater
,”
Chem. Eng. Sci.
,
39
(
5
), pp.
821
828
.
13.
Lorenzo
,
M. D.
,
Aman
,
Z. M.
,
Soto
,
G. S.
,
Johns
,
M.
,
Kozielski
,
K. A.
, and
May
,
E. F.
,
2014
, “
Hydrate Formation in Gas-Dominant Systems Using a Single-Pass Flowloop
,”
Energy Fuels
,
28
(
5
), pp.
3043
3052
.
14.
Jassim
,
E.
,
Abdi
,
M. A.
, and
Muzychka
,
Y.
,
2010
, “
A New Approach to Investigate Hydrate Deposition in Gas-Dominated Flowlines
,”
J. Nat. Gas Sci. Eng.
,
2
(
4
), pp.
163
177
.
15.
Davies
,
S. R.
,
Boxall
,
J. A.
,
Dieker
,
L. E.
,
Sum
,
A. K.
,
Koh
,
C. A.
,
Sloan
,
E. D.
,
Creek
,
J. L.
, and
Xu
,
Z. G.
,
2010
, “
Predicting Hydrate Plug Formation in Oil-Dominated Flowlines
,”
J. Pet. Sci. Eng.
,
72
(
3–4
), pp.
302
309
.
16.
Yapa
,
P. D.
,
Dasanayaka
,
L. K.
,
Bandara
,
U. C.
, and
Nakata
,
K.
,
2010
, “
A Model to Simulate the Transport and Fate of Gas and Hydrates Released in Deepwater
,”
J. Hydraul. Res.
,
48
(
5
), pp.
559
572
.
17.
Warzinski
,
R. P.
,
Lynn
,
R.
,
Haljasmaa
,
I.
,
Leifer
,
I.
,
Shaffer
,
F.
,
Anderson
,
B. J.
, and
Levine
,
J. S.
,
2014
, “
Dynamic Morphology of Gas Hydrate on a Methane Bubble in Water: Observations and New Insights for Hydrate Film Models
,”
Geophys. Res. Lett.
,
41
(
19
), pp.
6841
6847
.
18.
Chen
,
L.
,
Levine
,
J. S.
,
Gilmer
,
M. W.
,
Sloan
,
E. D.
,
Koh
,
C. A.
, and
Sum
,
A. K.
,
2014
, “
Methane Hydrate Formation and Dissociation on Suspended Gas Bubbles in Water
,”
J. Chem. Eng. Data
,
59
(
4
), pp.
1045
1051
.
19.
Zhang
,
Y.
, and
Xu
,
Z.
,
2003
, “
Kinetics of Convective Crystal Dissolution and Melting, With Applications to Methane Hydrate Dissolution and Dissociation in Seawater
,”
Earth Planet Sci. Lett.
,
213
(
1–2
), pp.
133
148
.
20.
Li
,
C.
, and
Huang
,
T.
,
2016
, “
Simulation of Gas Bubbles With Gas Hydrates Rising in Deep Water
,”
Ocean Eng.
,
112
, pp.
16
24
.
21.
McGinnis
,
D. F.
,
Greinert
,
J.
,
Artemov
,
Y.
,
Beaubien
,
S. E.
, and
Wüest
,
A.
,
2006
, “
Fate of Rising Methane Bubbles in Stratified Waters: How Much Methane Reaches the Atmosphere?
,”
J. Geophys. Res.: Oceans
,
111
(
C9
), pp.
141
152
.
22.
Davies
,
S. R.
,
Sloan
,
E. D.
,
Sum
,
A. K.
, and
Koh
,
C. A.
,
2010
, “
In Situ Studies of the Mass Transfer Mechanism Across a Methane Hydrate Film Using High-Resolution Confocal Raman Spectroscopy
,”
J. Phys. Chem. C
,
114
(
2
), pp.
1173
1180
.
23.
Nickens
,
H. V.
,
1987
, “
A Dynamic Computer Model of a Kicking Well
,”
SPE Drill. Eng.
,
2
(
02
), pp.
159
173
.
24.
Starrett
,
M. P.
,
Hill
,
A. D.
, and
Sepehrnoori
,
K.
,
1990
, “
A Shallow-Gas-Kick Simulator Including Diverter Performance
,”
SPE Drill. Eng.
,
5
(
1
), pp.
79
85
.
25.
Fjelde
,
K. K.
,
Frøyen
,
J.
, and
Ghauri
,
A. A.
,
2016
, “
A Numerical Study of Gas Kick Migration Velocities and Uncertainty
,”
SPE Bergen One Day Seminar
, Grieghallen, Bergen, Norway, Apr. 20, SPE Paper No.
SPE-180053-MS
.
26.
Wang
,
Z.
,
Peden
,
J. M.
, and
Lemanczyk
,
R. Z.
,
1994
, “
Gas Kick Simulation Study for Horizontal Wells
,”
SPE/IADC Drilling Conference
, Dallas, TX, Feb. 15–18, SPE Paper No.
SPE 27498-MS
.
27.
Vefring
,
E. H.
,
Wang
,
Z.
,
Gaard
,
S.
, and
Bach
,
G. F.
,
1995
, “
An Advanced Kick Simulator for High Angle and Horizontal Wells—Part I
,”
SPE/IADC Drilling Conference
, Amsterdam, The Netherlands, Feb. 28–Mar. 2, SPE Paper No.
SPE 29345-MS
.
28.
White
,
D. B.
, and
Walton
,
I. C.
,
1990
, “
A Computer Model for Kicks in Water-and Oil-Based Muds
,”
SPE/IADC Drilling Conference
, Houston, TX, Feb. 27–Mar. 2, SPE Paper No.
SPE 19975-MS
.
29.
Petersen
,
J.
,
Bjørkevoll
,
K. S.
, and
Lekvam
,
K.
,
2001
, “
Computing the Danger of Hydrate Formation Using a Modified Dynamic Kick Simulator
,”
SPE/IADC Drilling Conference
, Amsterdam, The Netherlands, Feb. 27–Mar. 1, SPE Paper No.
SPE 67749-MS
.
30.
Wang
,
Z. Y.
,
Sun
,
B. J.
,
Cheng
,
H. Q.
, and
Gao
,
Y. H.
,
2008
, “
Prediction of Gas Hydrate Formation Region in the Wellbore of Deepwater Drilling
,”
Pet. Explor. Dev.
,
35
(
6
), pp.
731
735
.
31.
Shimizu
,
T.
,
Yamamoto
,
Y.
, and
Tenma
,
N.
,
2016
, “
Methane-Hydrate-Formation Processes in Methane/Water Bubbly Flows
,”
SPE J.
,
22
(
3
), pp. 746–755.
32.
Barnea
,
D.
,
1987
, “
A Unified Model for Predicting Flow-Pattern Transitions for the Whole Range of Pipe Inclinations
,”
Int. J. Multiphase Flow
,
13
(
1
), pp.
1
12
.
33.
Shen
,
X.
, and
Hibiki
,
T.
,
2015
, “
Interfacial Area Concentration in Gas–Liquid Bubbly to Churn Flow Regimes in Large Diameter Pipes
,”
Int. J. Heat Fluid Flow
,
54
, pp.
107
118
.
34.
Chen
,
F.
, and
Yapa
,
P. D.
,
2001
, “
Estimating Hydrate Formation and Decomposition of Gases Released in a Deepwater Ocean Plume
,”
J. Mar. Syst.
,
30
(
1–2
), pp.
21
32
.
35.
Rehder
,
G.
,
Leifer
,
I.
,
Brewer
,
P. G.
,
Friederich
,
G.
, and
Peltzer
,
E. T.
,
2009
, “
Controls on Methane Bubble Dissolution Inside and Outside the Hydrate Stability Field From Open Ocean Field Experiments and Numerical Modeling
,”
Mar. Chem.
,
114
(
1–2
), pp.
19
30
.
36.
Jähne
,
B.
,
Heinz
,
G.
, and
Dietrich
,
W.
,
1987
, “
Measurement of the Diffusion Coefficients of Sparingly Soluble Gases in Water
,”
J. Geophys. Res.: Oceans
,
92
(
C10
), pp.
10767
10776
.
37.
Blass
,
E.
,
1988
, “
Formation and Coalescence of Bubbles and Droplets
,”
Chem. Ing. Tech.
,
60
(
12
), pp.
935
947
.
38.
Uchida
,
T.
, and
Kawabata
,
J.
,
1997
, “
Measurements of Mechanical Properties of the Liquid CO2-Water-CO2-Hydrate System
,”
Energy
,
22
(
2–3
), pp.
357
361
.
39.
Li
,
S. L.
,
Sun
,
C. Y.
,
Chen
,
G. J.
,
Li
,
Z. Y.
,
Ma
,
Q. L.
,
Yang
,
L. Y.
, and
Sum
,
A. K.
,
2014
, “
Measurements of Hydrate Film Fracture Under Conditions Simulating the Rise of Hydrated Gas Bubbles in Deep Water
,”
Chem. Eng. Sci.
,
116
, pp.
109
117
.
40.
Englezos
,
P.
,
Kalogerakis
,
N.
,
Dholabhai
,
P. D.
, and
Bishnoi
,
P. R.
,
1987
, “
Kinetics of Formation of Methane and Ethane Gas Hydrates
,”
Chem. Eng. Sci.
,
42
(
11
), pp.
2647
2658
.
41.
Holder
,
G. D.
,
Mokka
,
L. P.
, and
Warzinski
,
R. P.
,
2001
, “
Formation of Gas Hydrates From Single-Phase Aqueous Solutions
,”
Chem. Eng. Sci.
,
56
(
24
), pp.
6897
6903
.
42.
Skovborg
,
P.
, and
Rasmussen
,
P.
,
1994
, “
A Mass Transport Limited Model for the Growth of Methane and Ethane Gas Hydrates
,”
Chem. Eng. Sci.
,
49
(
8
), pp.
1131
1143
.
43.
Kim
,
H. C.
,
Bishnoi
,
P. R.
,
Heidemann
,
R. A.
, and
Rizvi
,
S. S. H.
,
1987
, “
Kinetics of Methane Hydrate Decomposition
,”
Chem. Eng. Sci.
,
42
(
7
), pp.
1645
1653
.
44.
Duan
,
Z.
, and
Mao
,
S.
,
2006
, “
A Thermodynamic Model for Calculating Methane Solubility, Density and Gas Phase Composition of Methane-Bearing Aqueous Fluids From 273 to 523K and From 1 to 2000 bar
,”
Geochim. Cosmochim. Acta
,
70
(
13
), pp.
3369
3386
.
45.
Makogon
,
T.
, and
Sloan
,
E. D.
,
1994
, “
Phase Equilibrium for Methane Hydrate From 190 to 262 K
,”
J. Chem. Eng. Data
,
39
(
2
), pp.
351
353
.
46.
Hasan
,
A. R.
, and
Kabir
,
C. S.
,
2002
,
Fluid Flow and Heat Transfer in Wellbores
,
Society of Petroleum Engineers
,
Richardson, TX
.
47.
Pan
,
L.
,
Webb
,
S. W.
, and
Oldenburg
,
C. M.
,
2011
, “
Analytical Solution for Two-Phase Flow in a Wellbore Using the Drift-Flux Model
,”
Adv. Water Resour.
,
34
(
12
), pp.
1656
1665
.
48.
Shi
,
H.
,
Holmes
,
J. A.
,
Durlofsky
,
L. J.
,
Aziz
,
K.
,
Diaz
,
L.
,
Alkaya
,
B.
, and
Oddie
,
G.
,
2005
, “
Drift-Flux Modeling of Two-Phase Flow in Wellbores
,”
SPE J.
,
10
(
1
), pp.
24
33
.
49.
Livescu
,
S.
,
Durlofsky
,
L. J.
,
Aziz
,
K.
, and
Ginestra
,
J. C.
,
2010
, “
A Fully-Coupled Thermal Multiphase Wellbore Flow Model for Use in Reservoir Simulation
,”
J. Pet. Sci. Eng.
,
71
(
3–4
), pp.
138
146
.
50.
Hasan
,
A. R.
, and
Kabir
,
C. S.
,
1991
, “
Heat Transfer During Two-Phase Flow in Wellbores—Part I: Formation Temperature
,”
SPE Annual Technical Conference and Exhibition
, Dallas, TX, Oct. 6–9, SPE Paper No.
SPE-22866-MS
.
51.
Gao
,
Y.
,
Cui
,
Y.
,
Xu
,
B.
,
Sun
,
B.
,
Zhao
,
X.
,
Li
,
H.
, and
Chen
,
L.
,
2017
, “
Two Phase Flow Heat Transfer Analysis at Different Flow Patterns in the Wellbore
,”
Appl. Therm. Eng.
,
117
, pp.
544
552
.
52.
Gao
,
C.
,
2003
, “
Empirical Heat Transfer Model for Slug Flow and Bubble Flow in Vertical Subsea Pipes
,”
Nigeria Annual International Conference and Exhibition
, Abuja, Nigeria, Aug. 4–6, SPE Paper No.
SPE-85651-MS
.
53.
Ekrann
,
S.
, and
Rommetveit
,
R.
,
1985
, “
A Simulator for Gas Kicks in Oil-Based Drilling Muds
,”
SPE Annual Technical Conference and Exhibition
, Las Vegas, NV, Sept. 22–26, SPE Paper No.
SPE-14182-MS
.
54.
Tsimpanogiannis
,
I. N.
,
Economou
,
I. G.
, and
Stubos
,
A. K.
,
2014
, “
Methane Solubility in Aqueous Solutions Under Two-Phase (H–Lw) Hydrate Equilibrium Conditions
,”
Fluid Phase Equilib.
,
371
, pp.
106
120
.
55.
Greenberg
,
J.
,
2008
, “
Weatherford Sensors Track Vibration to Increase ROP, Temperature Changes for Early Kick Detection
,”
Drill. Contractor
,
64
(
2
), pp.
46
47
.
56.
Dai
,
G. C.
, and
Chen
,
M. H.
,
2005
,
Fluid Mechanics in Chemical Engineering
,
Chemical Industry Press
,
Beijing, China
(in Chinese).
You do not currently have access to this content.