The flow and heat transfer (FHT) in porous volumetric solar receiver was investigated through a double-distributed thermally coupled multiple-relaxation-time (MRT) lattice Boltzmann model (LBM) in this study. The MRT-LBM model was first verified by simulating the FHT in Sierpinski carpet fractal porous media and compared with the results from computational fluid dynamics (CFD). Three typical porous structures in volumetric solar receivers were developed and constructed, and then the FHT in these three porous structures were investigated using the MRT-LBM model. The effects of pore structure, Reynolds (Re) number based on air velocity at inlet, the porosity, and the thermal diffusivity of solid matrix were discussed. It was found that type-III pore structure among the three typical porous structures has the best heat transfer performance because of its lowest maximum temperature of solid particles at the inlet and the highest average temperature of air at the outlet, under the same porosity and heat flux density. Furthermore, increasing the thermal diffusivity of solid particles will lead to higher averaged air temperature at the outlet. It is hoped that the simulation results will be beneficial to the solar thermal community when designing the solar receivers in concentrated solar power (CSP) applications.

References

References
1.
Archibold
,
A. R.
,
Bhardwaj
,
A.
,
Rahman
,
M.
,
Goswami
,
Y.
, and
Stefanakos
,
E.
,
2016
, “
Comparison of Numerical and Experimental Assessment of a Latent Heat Energy Storage Module for a High-Temperature Phase-Change Material
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p. 052007.
2.
Hussain
,
M. I.
,
Mokheimer
,
E. M. A.
, and
Ahmed
,
S.
,
2017
, “
Optimal Design of a Solar Collector for Required Flux Distribution on a Tubular Receiver
,”
ASME J. Energy Resour. Technol.
,
139
(1), p. 012006.
3.
Fang
,
J. B.
,
Wei
,
J. J.
,
Dong
,
X. W.
, and
Wang
,
Y. S.
,
2011
, “
Thermal Performance Simulation of a Solar Cavity Receiver Under Windy Conditions
,”
Sol. Energy
,
85
(
1
), pp.
126
138
.
4.
Montes
,
M. J.
,
Rovira
,
A.
,
Martínez-Val
,
J. M.
, and
Ramos
,
A.
,
2012
, “
Proposal of a Fluid Flow Layout to Improve the Heat Transfer in the Active Absorber Surface of Solar Central Cavity Receivers
,”
Appl. Therm. Eng.
,
35
(
1
), pp.
220
232
.
5.
Reddy
,
K. S.
, and
Kumar
,
N. S.
,
2009
, “
An Improved Model for Natural Convection Heat Loss From Modified Cavity Receiver of Solar Dish Concentrator
,”
Sol. Energy
,
83
(
10
), pp.
1884
1892
.
6.
Wang
,
F.
,
Shuai
,
Y.
,
Yuan
,
Y.
,
Yang
,
G.
, and
Tan
,
H.
,
2010
, “
Thermal Stress Analysis of Eccentric Tube Receiver Using Concentrated Solar Radiation
,”
Sol. Energy
,
84
(
10
), pp.
1809
1815
.
7.
Agrafiotis
,
C. C.
,
Mavroidis
,
I.
,
Konstandopoulos
,
A. G.
,
Hoffschmidt
,
B.
,
Stobbe
,
P.
,
Romero
,
M.
, and
Fernandez-Quero
,
V.
,
2007
, “
Evaluation of Porous Silicon Carbide Monolithic Honeycombs as Volumetric Receivers/Collectors of Concentrated Solar Radiation
,”
Sol. Energy Mater. Sol. Cells
,
91
(
6
), pp.
474
488
.
8.
Fend
,
T.
,
Hoffschmidt
,
B.
,
Pitzpaal
,
R.
,
Reutter
,
O.
, and
Rietbrock
,
P.
,
2002
, “
Porous Materials as Open Volumetric Solar Receivers: Experimental Determination of Thermophysical and Heat Transfer Properties
,”
Energy
,
29
(
5–6
), pp.
823
833
.
9.
Wu
,
Z.
,
Caliot
,
C.
,
Bai
,
F.
,
Flamant
,
G.
,
Wang
,
Z.
,
Zhang
,
J.
, and
Tian
,
C.
,
2010
, “
Experimental and Numerical Studies of the Pressure Drop in Ceramic Foams for Volumetric Solar Receiver Applications
,”
Appl. Energy
,
87
(
2
), pp.
504
513
.
10.
Romkes
,
S. J. P.
,
Dautzenberg
,
F. M.
,
Bleek
,
C. M. V. D.
, and
Calis
,
H. P. A.
,
2003
, “
CFD Modelling and Experimental Validation of Particle-to-Fluid Mass and Heat Transfer in a Packed Bed at Very Low Channel to Particle Diameter Ratio
,”
Chem. Eng. J.
,
96
(
1–3
), pp.
3
13
.
11.
Yang
,
J.
,
Wang
,
Q.
,
Zeng
,
M.
, and
Nakayama
,
A.
,
2010
, “
Computational Study of Forced Convective Heat Transfer in Structured Packed Beds With Spherical or Ellipsoidal Particles
,”
Chem. Eng. Sci.
,
65
(
2
), pp.
726
738
.
12.
Wu
,
Z.
,
Caliot
,
C.
,
Flamant
,
G.
, and
Wang
,
Z.
,
2011
, “
Numerical Simulation of Convective Heat Transfer Between Air Flow and Ceramic Foams to Optimise Volumetric Solar Air Receiver Performances
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1527
1537
.
13.
Akolkar
,
A.
, and
Petrasch
,
J.
,
2011
, “
Tomography Based Pore-Level Optimization of Radiative Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
54
(
23–24
), pp.
4775
4783
.
14.
Wang
,
F.
,
Tan
,
J.
,
Yong
,
S.
,
Tan
,
H.
, and
Chu
,
S.
,
2014
, “
Thermal Performance Analyses of Porous Media Solar Receiver With Different Irradiative Transfer Models
,”
Int. J. Heat Mass Transfer
,
78
(
11
), pp.
7
16
.
15.
Cheng
,
Z. D.
,
He
,
Y. L.
, and
Cui
,
F. Q.
,
2013
, “
Numerical Investigations on Coupled Heat Transfer and Synthetical Performance of a Pressurized Volumetric Receiver With MCRT–FVM Method
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1044
1054
.
16.
He
,
Y. L.
,
Cui
,
F. Q.
,
Cheng
,
Z. D.
,
Li
,
Z. Y.
, and
Tao
,
W. Q.
,
2013
, “
Numerical Simulation of Solar Radiation Transmission Process for the Solar Tower Power Plant: From the Heliostat Field to the Pressurized Volumetric Receiver
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
583
595
.
17.
Zhu
,
Q.
, and
Xuan
,
Y.
,
2017
, “
Pore Scale Numerical Simulation of Heat Transfer and Flow in Porous Volumetric Solar Receivers
,”
Appl. Therm. Eng.
,
120
, pp. 150–159.
18.
Gu
,
Y.
, and
Oliver
,
D. S.
,
2006
, “
The Ensemble Kalman Filter for Continuous Updating of Reservoir Simulation Models
,”
ASME J. Energy Resour. Technol.
,
128
(
1
), pp. 79–87.
19.
Luan
,
H. B.
,
Xu
,
H.
,
Chen
,
L.
,
Sun
,
D. L.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2011
, “
Evaluation of the Coupling Scheme of FVM and LBM for Fluid Flows Around Complex Geometries
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1975
1985
.
20.
Chong
,
H. A.
,
Dilmore
,
R.
, and
Wang
,
J. Y.
,
2017
, “
Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoirs: A Three-Dimensional, Two-Phase Model
,”
ASME J. Energy Resour. Technol.
,
139
(1), p. 012903.
21.
Qian
,
Y. H.
,
D'Humières
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Models for the Navier-Stokes Equations
,”
EPL
,
17
(
6
), p.
479
.
22.
Frisch
,
U.
,
Hasslacher
,
B.
, and
Pomeau
,
Y.
,
1986
, “
Lattice-Gas Automata for the Navier-Stokes Equation
,”
Phys. Rev. Lett.
,
56
(
14
), pp.
1505
1508
.
23.
Ma
,
X.
,
Mou
,
J.
,
Lin
,
H.
,
Jiang
,
F.
,
Liu
,
K.
, and
Zhao
,
X.
,
2017
, “
Lattice Boltzmann Simulation of Wormhole Propagation in Carbonate Acidizing
,”
ASME J. Energy Resour. Technol.
,
139
(4), p. 042002.
24.
Liu
,
H.
,
Kang
,
Q.
,
Leonardi
,
C. R.
,
Schmieschek
,
S.
,
Narváez
,
A.
,
Jones
,
B. D.
,
Williams
,
J. R.
,
Valocchi
,
A. J.
, and
Harting
,
J.
,
2016
, “
Multiphase Lattice Boltzmann Simulations for Porous Media Applications
,”
Comput. Geosci.
,
20
(
4
), pp.
777
805
.
25.
Nabovati
,
A.
,
Llewellin
,
E. W.
, and
Sousa
,
A. C. M.
,
2009
, “
A General Model for the Permeability of Fibrous Porous Media Based on Fluid Flow Simulations Using the Lattice Boltzmann Method
,”
Composites, Part A
,
40
(
6–7
), pp.
860
869
.
26.
Succi
,
S.
,
2008
, “
Lattice Boltzmann Across Scales: From Turbulence to DNA Translocation
,”
Eur. Phys. J. B
,
64
(
3–4
), pp.
471
479
.
27.
Cai
,
J.
, and
Huai
,
X.
,
2010
, “
Study on Fluid–Solid Coupling Heat Transfer in Fractal Porous Medium by Lattice Boltzmann Method
,”
Appl. Therm. Eng.
,
30
(
6–7
), pp.
715
723
.
28.
Liu
,
Q.
,
He
,
Y. L.
,
Li
,
Q.
, and
Tao
,
W. Q.
,
2014
, “
A Multiple-Relaxation-Time Lattice Boltzmann Model for Convection Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
73
(
6
), pp.
761
775
.
29.
Eshghinejadfard
,
A.
,
Daróczy
,
L.
,
Janiga
,
G.
, and
Thévenin
,
D.
,
2016
, “
Calculation of the Permeability in Porous Media Using the Lattice Boltzmann Method
,”
Int. J. Heat Fluid Flow
,
62
(Pt. A), pp. 93–103.
30.
Dai
,
Q.
, and
Yang
,
L.
,
2013
, “
LBM Numerical Study on Oscillating Flow and Heat Transfer in Porous Media
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
16
25
.
31.
Su
,
Y.
,
Kulacki
,
F. A.
, and
Davidson
,
J. H.
,
2014
, “
Experimental and Numerical Investigations on a Solar Tracking Concentrated Photovoltaic–Thermal System With a Novel Non-Dimensional Lattice Boltzmann Method
,”
Sol. Energy
,
107
(
9
), pp.
145
158
.
32.
Luo
,
L.-S.
, and
L
,
P.
,
2000
, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability
,”
Phys. Rev. E
,
61
(
6
), p.
6546
.
33.
Ma
,
Q.
,
Chen
,
Z.
, and
Liu
,
H.
,
2017
, “
Multiple-Relaxation-Time Lattice Boltzmann Simulation for Flow, Mass Transfer, and Adsorption in Porous Media
,”
Phys. Rev. E
,
96
(
1
), p. 013313.
34.
Liu
,
Q.
, and
He
,
Y. L.
,
2016
, “
Lattice Boltzmann Simulations of Convection Heat Transfer in Porous Media
,”
Phys. A
,
465
, pp.
742
753
.
35.
Chen
,
L.
,
Kang
,
Q.
,
Mu
,
Y.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2014
, “
A Critical Review of the Pseudopotential Multiphase Lattice Boltzmann Model: Methods and Applications
,”
Int. J. Heat Mass Transfer
,
76
(
6
), pp.
210
236
.
36.
Girimaji
,
S.
,
2011
, “
Lattice Boltzmann Method: Fundamentals and Engineering Applications With Computer Codes
,”
AIAA J.
,
51
(
1
), pp.
278
279
.
37.
Higuera
,
F. J.
,
Succi
,
S.
, and
Benzi
,
R.
,
1989
, “
Lattice Gas Dynamics With Enhanced Collisions
,”
EPL
,
9
(
4
), p.
345
.
38.
Mccracken
,
M. E.
, and
Abraham
,
J.
,
2005
, “
Multiple-Relaxation-Time Lattice-Boltzmann Model for Multiphase Flow
,”
Phys. Rev. E
,
71
(
3
), p.
036701
.
39.
Zou
,
Q.
, and
He
,
X.
,
1997
, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model
,”
Phys. Fluids
,
9
(
6
), pp.
1591
1598
.
40.
Liu
,
C. H.
,
Lin
,
K. H.
,
Mai
,
H. C.
, and
Lin
,
C. A.
,
2010
, “
Thermal Boundary Conditions for Thermal Lattice Boltzmann Simulations
,”
Comput. Math. Appl.
,
59
(
7
), pp.
2178
2193
.
41.
Li
,
Q.
,
He
,
Y. L.
,
Tang
,
G. H.
, and
Tao
,
W. Q.
,
2010
, “
Improved Axisymmetric Lattice Boltzmann Scheme
,”
Phys. Rev. E
,
81
(
5
), p.
056707
.
42.
Wang
,
J.
,
Wang
,
D.
,
Lallemand
,
P.
, and
Luo
,
L. S.
,
2013
, “
Lattice Boltzmann Simulations of Thermal Convective Flows in Two Dimensions
,”
Comput. Math. Appl.
,
65
(
2
), pp.
262
286
.
43.
Inamuro
,
T.
,
Yoshino
,
M.
, and
Ogino
,
F.
,
1995
, “
A Non‐Slip Boundary Condition for Lattice Boltzmann Simulations
,”
Phys. Fluids
,
7
(
12
), pp.
2928
2930
.
44.
Barlow
,
M. T.
, and
Bass
,
R. F.
,
1989
, “
The Construction of Brownian Motion on the Sierpinski Carpet
,”
Annales de l'I.H.P. Probabilités et Statistiques
,
25
(
3
), pp.
225
257
.
45.
Safavisohi
,
B.
, and
Sharbati
,
E.
,
2007
, “
Porosity and Permeability Effects on Centerline Temperature Distributions, Peak Flame Temperature, Flame Structure, and Preheating Mechanism for Combustion in Porous Media
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
54
65
.
46.
Roldán
,
M. I.
,
Smirnova
,
O.
,
Fend
,
T.
,
Casas
,
J. L.
, and
Zarza
,
E.
,
2014
, “
Thermal Analysis and Design of a Volumetric Solar Absorber Depending on the Porosity
,”
Renewable Energy
,
62
(
2
), pp.
116
128
.
47.
Fend
,
T.
,
2010
, “
High Porosity Materials as Volumetric Receivers for Solar Energetics
,”
Opt. Appl.
,
40
(
2
), pp.
271
284
.
You do not currently have access to this content.