In this paper, experimental and numerical techniques have been utilized to quantify heavy oil properties in CO2 huff-n-puff processes under reservoir conditions. Experimentally, fluid properties together with viscosity reduction of heavy oil and interfacial properties between CO2 and heavy oil have been quantified, while five cycles of CO2 huff-n-puff processes have been conducted to determine oil recovery together with component variation of produced and residual oils. Theoretically, numerical simulation has been conducted to analyze the underlying recovery mechanisms associated with the CO2 huff-n-puff processes. CO2 huff-n-puff processes are only effective in the first two cycles under the existing experimental conditions, while the effective sweep range is limited near the wellbore region, resulting in poor oil recovery in the subsequent cycles. As for produced oil, its viscosity, density, resin and asphaltene contents, and molecular weight of asphaltene are reduced, whereas, for the residual oil, they are increased. The asphaltene component in the residual oil shows weak stability compared to that of the produced oil, while the ultimate oil recovery after the fifth CO2 cycle of huff-n-huff processes is measured to be 31.56%.

References

References
1.
Zheng
,
S.
,
Sun
,
H.
, and
Yang
,
D.
,
2016
, “
Coupling Heat and Mass Transfer for Determining Individual Diffusion Coefficient of a Hot C3H8–CO2 Mixture in Heavy Oil Under Reservoir Conditions
,”
Int. J. Heat Mass Transfer
,
102
, pp.
251
263
.
2.
Sun
,
H.
,
Li
,
H.
, and
Yang
,
D.
,
2014
, “
Coupling Heat and Mass Transfer for a Gas Mixture–Heavy Oil System at High Pressures and Elevated Temperatures
,”
Int. J. Heat Mass Transfer
,
74
, pp.
173
184
.
3.
Gul
,
A.
, and
Trivedi
,
J. J.
,
2010
, “
CO2-Based VAPEX for Heavy Oil Recovery in Fractured Carbonate Reservoirs
,”
SPE EOR Conference at Oil and Gas West Asia, Muscat
, Oman, Apr. 11–13,
SPE
Paper No. SPE 129594-MS.
4.
Kovscek
,
A. R.
,
2012
, “
Emerging Challenges and Potential Futures for Thermally Enhanced Oil Recovery
,”
J. Pet. Sci. Eng.
,
98–99
, pp.
130
143
.
5.
Miller
,
K. A.
,
Moore
,
R. G.
,
Ursenbach
,
M. G.
,
Laureshen
,
C. J.
, and
Mehta
,
S. A.
,
2002
, “
Proposed Air Injection Recovery of Cold-Produced Heavy Oil Reservoirs
,”
J. Can. Pet. Tech.
,
41
(
3
), pp.
40
49
.
6.
Das
,
S. K.
, and
Butler
,
R. M.
,
1998
, “
Mechanism of the Vapor Extraction Process for Heavy Oil and Bitumen
,”
J. Pet. Sci. Eng.
,
21
(1–2), pp.
43
59
.
7.
Frauenfeld
,
T.
,
Lillico
,
D.
,
Jossy
,
G.
,
Vilcsak
,
G.
,
Rabeeh
,
S.
, and
Singh
,
S.
,
1998
, “
Evaluation of Partially Miscible Processes for Alberta Heavy Oil Reservoirs
,”
J. Can. Pet. Tech.
,
37
(
4
), pp.
17
25
.
8.
Metwally
,
M.
,
1998
, “
Enriched Gas Pressure Cycling Process for Depleted Heavy Oil Reservoirs
,”
J. Can. Pet. Tech.
,
37
(
12
), pp.
56
60
.
9.
Yang
,
C.
, and
Gu
,
Y.
,
2006
, “
A New Method for Measuring Solvent Diffusivity in Heavy Oil by Dynamic Pendant Drop Shape Analysis (DPDSA)
,”
SPE J.
,
11
(
1
), pp.
48
57
.
10.
Fairfield
,
W. H.
, and
White
,
P. D.
,
1982
, “
Lloydminster Fireflood Performance, Modifications Promise Good Recoveries
,”
Oil Gas J.
,
80
(6), pp.
101
102
.
11.
Dyer
,
S. B.
,
Huang
,
S. S.
,
Farouq Ali
,
S. M.
, and
Jha
,
K. N.
,
1994
, “
Phase Behaviour and Scaled Model Studies of Prototype Saskatchewan Heavy Oils With Carbon Dioxide
,”
J. Can. Pet. Tech.
,
33
(
8
), pp.
42
48
.
12.
Dong
,
M.
,
Huang
,
S.
, and
Hutchence
,
K.
,
2006
, “
Methane Pressure-Cycling Process With Horizontal Wells for Thin Heavy-Oil Reservoirs
,”
SPE Reserve Eval. Eng.
,
9
(
2
), pp.
154
164
.
13.
Das
,
S. K.
,
1998
, “
VAPEX: An Efficient Process for the Recovery of Heavy Oil and Bitumen
,”
SPE J.
,
3
(
3
), pp.
232
237
.
14.
James
,
L. A.
, and
Rezaei
,
N.
,
2008
, “
Chatzis, I. VAPEX, Warm VAPEX and Hybrid VAPEX−The State of Enhanced Oil Recovery for In Situ Heavy Oils in Canada
,”
J. Can. Pet. Tech.
,
47
(
4
), pp.
1
7
.
15.
Zheng
,
S.
, and
Yang
,
D.
,
2013
, “
Pressure Maintenance and Improving oil Recovery by Means of Immiscible Water-Alternating-CO2 Processes in Thin Heavy-Oil Reservoirs
,”
SPE Reserve Eval. Eng.
,
16
(
1
), pp.
60
71
.
16.
Li, H., Zheng, S., and Yang, D., 2013, “Enhanced Swelling Effect and Viscosity Reduction of Solvent (s)/CO2/Heavy-Oil Systems,”
SPE J.
, 18(4), pp. 694–707.
17.
Van
,
S. L.
, and
Chon
,
B. H.
,
2017
, “
Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), pp.
32906
32920
.
18.
Du
,
X.
,
Gu
,
M.
,
Duan
,
S.
, and
Xian
,
X.
,
2017
, “
The Influences of CO2 Injection Pressure on CO2 Dispersion and the Mechanism of CO2–CH4 Displacement in Shale
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), pp.
12907
12916
.
19.
Ko
,
S. C. M.
,
Stanton
,
P. M.
, and
Stephenson
,
D. J.
,
1985
, “
Tertiary Recovery Potential of CO2 Flooding in Joffre Viking Pool, Alberta
,”
J. Can. Pet. Tech.
,
24
(
1
), pp.
36
43
.
20.
Mungan
,
N.
,
1981
, “
Carbon Dioxide Flooding−Fundamentals
,”
J. Can. Pet. Tech.
,
20
(
1
), pp.
87
92
.
21.
Liu
,
H.
,
Wang
,
M. C.
,
Zhou
,
X.
, and
Zhang
,
Y. P.
,
2005
, “
EOS Simulation for CO2 Huff-n-Puff Process
,”
Petroleum Society's Sixth Canadian International Petroleum Conference
, Calgary, AB, Canada, June 7–9, Paper No.
PETSOC-2005-120
.
22.
Godec
,
M.
,
Kuuskraa
,
V.
,
Leeuwen
,
T. V.
,
Melzer
,
L. S.
, and
Wildgust
,
N.
,
2011
, “
CO2 Storage in Depleted Oil Fields: The Worldwide Potential for Carbon Dioxide Enhanced Oil Recovery
,”
Energy Procedia
,
4
(
2
), pp.
2162
2169
.
23.
Simon
,
R.
, and
Graue
,
D. J.
,
1965
, “
Generalized Correlations for Predicting Solubility, Swelling and Viscosity Behaviour of Crude Oil−CO2 Systems
,”
J. Pet. Tech.
,
17
(
1
), pp.
102
106
.
24.
Orr
,
F. M.
, Jr.
,
Heller
,
J. P.
, and
Taber
,
J. J.
,
1982
, “
Carbon Dioxide Flooding for Enhanced Oil Recovery: Promises and Problems
,”
J. Am. Oil Chem. Soc.
,
59
(
10
), pp.
810A
817A
.
25.
Godec
,
M. L.
,
Kuuskraa
,
V. A.
, and
Dipietro
,
P.
,
2013
, “
Opportunities for Using Anthropogenic CO2 for Enhanced Oil Recovery and CO2 Storage
,”
Energy Fuels
,
27
(
8
), pp.
4183
4189
.
26.
Riazi
,
M.
,
Sohrabi
,
M.
, and
Jamiolahmady
,
M.
,
2011
, “
Experimental Study of Pore-Scale Mechanisms of Carbonated Water Injection
,”
Transp. Porous Med.
,
86
(
1
), pp.
73
−86.
27.
Kulkarni
,
M. M.
, and
Rao
,
D. N.
,
2005
, “
Experimental Investigation of Miscible and Immiscible Water-Alternating-Gas (WAG) Process Performance
,”
J. Pet. Sci. Eng.
,
48
(
1
), pp.
1
20
.
28.
Sanchez-Rivera, D., Mohanty, K., and Balhoff, M., 2015, “Reservoir Simulation and Optimization of Huff-and-Puff Operations in the Bakken Shale,”
Fuel
,
147
, pp.
82
94
.
29.
Sheng
,
J. J.
,
2015
, “
Enhanced Oil Recovery in Shale Reservoirs by Gas Injection
,”
J. Nat. Gas Sci. Eng.
,
22
, pp.
252
259
.
30.
Song
,
C.
, and
Yang
,
D.
,
2017
, “
Experimental and Numerical Evaluation of CO2 Huff-n-Puff Processes in Bakken Formation
,”
Fuel
,
190
, pp.
145
162
.
31.
Kong
,
B.
,
Wang
,
S.
, and
Chen
,
S.
,
2016
, “
Simulation and Optimization of CO2 Huff-n-Puff Processes in Tight Oil Reservoirs
,”
SPE Improved Oil Recovery Conference
, Tulsa, OK, Apr. 11–13,
SPE
Paper No. SPE-179668-MS.
32.
Colmenares
,
C.
, and
Méndez
,
J. A.
,
2015
, “
New Approach on Analytical Solution for Heavy Oil Recovery by Huff & Puff CO2 Injection—Case study Bachaquero-01 Reservoir
,”
SPE Latin American and Caribbean Petroleum Engineering Conference
, Quito, Ecuador, Nov. 18–20,
SPE
Paper No. SPE-177033-MS.
33.
Wei
,
B.
,
Pang
,
S.
,
Pu
,
W.
,
Lu
,
L.
,
Wang
,
C.
, and
Kong
,
L.
,
2017
, “
Mechanisms of N2 and CO2 Assisted Steam Huff-n-Puff Process in Enhancing Heavy Oil Recovery: A Case Study Using Experimental and Numerical Simulation
,”
SPE Middle East Oil & Gas Show and Conference
, Manama, Kingdom of Bahrain, Mar. 6–9,
SPE
Paper No. SPE-183871-MS.
34.
Li
,
S.
,
Li
,
Z.
, and
Sun
,
X.
,
2017
, “
Effect of Flue Gas and n-Hexane on Heavy Oil Properties in Steam Flooding Process
,”
Fuel
,
187
, pp.
84
93
.
35.
Sun
,
Q.
,
Li
,
Z.
,
Wang
,
J.
,
Li
,
S.
,
Li
,
B.
,
Jiang
,
L.
,
Wang
,
H.
,
,
Q.
,
Zhang
,
C.
, and
Liu
,
W.
,
2015
, “
Aqueous Foam Stabilized by Partially Hydrophobic Nanoparticles in the Presence of Surfactant
,”
Colloids Surf. A
,
471
, pp.
54
64
.
36.
Wang, X., Zhang, S., and Gu, Y., 2010, “Four Important Onset Pressures for Mutual Interactions Between Each of Three Crude Oils and CO2,”
J. Chem. Eng. Data
, 55(10), pp. 4390–4398.
37.
Yang
,
D.
, and
Gu
,
Y.
,
2004
, “
Visualization of Interfacial Interactions of Crude Oil-CO2 Systems Under Reservoir
,”
SPE/DOE Symposium on Improved Oil Recovery
, Tulsa, OK, Apr. 17–21,
SPE
Paper No. SPE-89366-MS.
38.
Yang
,
D.
,
Tontiwachwuthikul
,
P.
, and
Gu
,
Y.
,
2005
, “
Interfacial Tensions of the Crude Oil + Reservoir Brine + CO2 Systems at Pressures Up to 31 MPa and Temperatures of 27 °C and 58 °C
,”
J. Chem. Eng. Data
,
50
(
4
), pp.
1242
1249
.
39.
Zolghadr
,
A.
,
Escrochi
,
M.
, and
Ayatollahi
,
S.
,
2013
, “
Temperature and Composition Effect on CO2 Miscibility by Interfacial Tension Measurement
,”
J. Chem. Eng. Data
,
58
(
5
), pp.
1168
1175
.
40.
Li
,
H.
, and
Yang
,
D.
,
2013
, “
Phase Behavior of C3H8/n-C4H10/Heavy Oil Systems at High Pressures and Elevated Temperatures
,”
J. Can. Pet. Tech.
,
52
(
1
), pp.
30
40
.
41.
Zheng
,
S.
,
Li
,
H.
, and
Yang
,
D.
,
2013
, “
Pressure Maintenance and Improving Oil Recovery With CO2 Immiscible CO2 Injection in Thin Heavy Oil Reservoirs
,”
J. Pet. Sci. Eng.
,
112
, pp.
139
152
.
42.
Prausnitz
,
J. M.
,
Lichtenthaler
,
R. N.
, and
Azevedo
,
E. G. D.
,
1999
,
Molecular Thermodynamics of Fluid-Phase Equilibria
,
3rd ed.
,
Prentice Hall
,
Englewood Cliffs, NJ
.
43.
Gong
,
Y.
, and
Gu
,
Y.
,
2015
, “
Miscible CO2 Simultaneous Water-and-Gas (CO2-SWAG) Injection in the Bakken Formation
,”
Energy Fuels
,
29
(
9
), pp.
5655
5665
.
44.
Gong
,
Y.
, and
Gu
,
Y.
,
2015
, “
Experimental Study of Water and CO2 Flooding in the Tight Main Pay Zone and Vuggy Residual Oil Zone of a Carbonate Reservoir
,”
Energy Fuels
,
29
(
10
), pp.
6213
6223
.
45.
Cao
,
M.
, and
Gu
,
Y.
,
2013
, “
Physicochemical Characterization of Produced Oils and Gases in Immiscible and Miscible CO2 Flooding Processes
,”
Energy Fuels
,
27
(
1
), pp.
440
453
.
46.
Li
,
Z.
, and
Gu
,
Y.
,
2014
, “
Optimum Timing for Miscible CO2-EOR After Waterflooding in a Tight Sandstone Formation
,”
Energy Fuels
,
28
(
1
), pp.
488
499
.
47.
Han
,
L.
, and
Gu
,
Y.
,
2014
, “
Optimization of Miscible CO2 Water-Alternating-Gas Injection in the Bakken Formation
,”
Energy Fuels
,
28
(
11
), pp.
6811
6819
.
48.
Li
,
X.
,
Li
,
H.
, and
Yang
,
D.
,
2013
, “
Determination of Multiphase Boundaries and Swelling Factors of Solvent(s)−CO2−Heavy Oil Systems at High Pressures and Elevated Temperatures
,”
Energy Fuels
,
27
(
3
), pp.
1293
1306
.
49.
Li
,
S.
, and
Li
,
Z.
,
2016
, “
Effect of Temperature on the Gas/Oil Relative Permeability of Orinoco Belt Foamy Oil
,”
SPE J.
,
21
(
1
), pp.
170
179
.
50.
Li
,
S.
,
Li
,
Z.
, and
Wang
,
Z.
,
2015
, “
Experimental Study on Performance of Foamy Oil Flow Under Different Solution Gas-Oil Ratios
,”
RSC Adv.
,
5
, pp.
66797
66806
.
51.
Maini
,
B. B.
,
1999
, “
Foamy Oil Flow in Primary Production of Heavy Oil Under Solution Gas Drive
,”
SPE Annual Technical Conference and Exhibition
, Houston, TX, Oct. 3–6,
SPE
Paper No. SPE-56541-MS.
52.
Shi
,
Y.
, and
Yang
,
D.
,
2016
, “
Quantification of a Single Gas Bubble Growth in Solvent(s)–CO2–Heavy Oil Systems With Consideration of Multicomponent Diffusion Under Nonequilibrium Conditions
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p. 022908.
53.
Shi
,
Y.
, and
Yang
,
D.
,
2017
, “
Experimental and Theoretical Quantification of Nonequilibrium Phase Behavior and Physical Properties of Foamy Oil Under Reservoir Conditions
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), pp.
62902
62913
.
54.
Zhang
,
Y. P.
,
Maini
,
B. B.
, and
Chakma
,
A.
,
2001
, “
Effects of Temperature on Foamy Oil Flow in Solution Gas-Drive in Cold Lake Field
,”
J. Can. Pet. Tech.
,
40
(
3
), pp.
48
55
.
55.
Ye
,
J.
,
2016
, “Interaction of CO2 and Crude Oil During CO2 Huff-n-Puff Process Under Reservoir Conditions,” M.Sc. thesis, China University of Petroleum (East China), Qingdao, China.
56.
Cao
,
M.
, and
Gu
,
Y.
,
2013
, “
Oil Recovery Mechanisms and Asphaltene Precipitation Phenomenon in Immiscible and Miscible CO2 Flooding Processes
,”
Fuel
,
109
, pp.
157
166
.
57.
Li
,
Z.
, and
Gu
,
Y.
,
2014
, “
Soaking Effect on Miscible CO2 Flooding in a Tight Sandstone Formation
,”
Fuel
,
134
, pp.
659
668
.
58.
Pu
,
W.
,
Wei
,
B.
,
Jin
,
F.
,
Li
,
Y.
,
Jia
,
H.
,
Liu
,
P.
, and
Tang
,
Z.
,
2016
, “
Experimental Investigation of CO2 Huff-n-Puff Process for Enhancing Oil Recovery in Tight Reservoirs
,”
Chem. Eng. Res. Des.
, 211, pp.
269
276
.
59.
Tao
,
L.
,
Li
,
Z.
,
Bi
,
Y.
,
Li
,
B.
, and
Zhang
,
J.
,
2010
, “
Multi-Combination Exploiting Technique of Ultra-Heavy Oil Reservoirs With Deep and Thin Layers in Shengli Oilfield
,”
Petrol. Explor. Dev.
,
37
(
6
), pp.
732
736
.
60.
Li
,
Z.
,
Lu
,
T.
,
Tao
,
L.
,
Li
,
B.
,
Zhang
,
J.
, and
Li
,
J.
,
2011
, “
CO2 and Viscosity Breaker Assisted Steam Huff and Puff Technology for Horizontal Wells in a Super-Heavy Oil Reservoir
,”
Petrol. Explor. Dev.
,
38
(
5
), pp.
600
605
.
61.
Zheng
,
S.
,
Li
,
H.
,
Sun
,
H.
, and
Yang
,
D.
,
2016
, “
Determination of Diffusion Coefficient for Alkane Solvent-CO2 Mixtures in Heavy Oil With Consideration of Swelling Effect
,”
Ind. Eng. Chem. Res.
,
55
(6), pp.
1533
1549
.
62.
Shi
,
Y.
,
Li
,
X.
, and
Yang
,
D.
,
2016
, “
Nonequilibrium Phase Behavior of Alkane Solvent(s)−CO2−Heavy Oil Systems Under Reservoir Conditions
,”
Ind. Eng. Chem. Res.
,
55
(10), pp.
2860
2871
.
63.
Li
,
H.
,
Yang
,
D.
, and
Tontiwachwuthikul
,
P.
,
2012
, “
Experimental and Theoretical Determination of Equilibrium Interfacial Tension for the Solvent(s)−CO2−Heavy Oil Systems
,”
Energy Fuels
,
26
(
3
), pp.
1776
1786
.
64.
Gonzalez
,
R. D. L.
,
2008
, “Modeling of Asphaltene Precipitation and Deposition Tendency Using the PC-SAFT Equation of State,”
Ph.D. dissertation
, Rice University, Houston, TX.
65.
Wang
,
S.
,
Chen
,
S.
, and
Li
,
Z.
,
2016
, “
Characterization of Produced and Residual Oils in the CO2 Flooding Process
,”
Energy Fuels
,
30
(
1
), pp.
54
62
.
You do not currently have access to this content.