The damage mechanism of fracturing fluids has always been the hot research topic in the development of low-permeability reservoir with hydraulic fracturing. At present, the research in this area is conducted mostly by the conventional core fluid flow test designed with industrial standards, less in the experiment operated from a microperspective. Against the reservoir cores with different permeability, and based on the results of SEM, mercury injection experiment, and core fluid flow test, this paper uses the technology of nuclear magnetic resonance (NMR) to systematically analyze the degree and rule of water-sensitivity, water-block, and solid-phase adsorption damage resulted from hydroxypropyl guar gum (HPG) and carboxymethyl guar gum (CMG) fracturing fluids, and proposes a comprehensive test method for evaluating the fracturing fluids damage to the reservoir. The test results show that fracturing fluid infiltrating into the core causes the increase of bound water, mobile water retention, and solid-phase macromolecule substance absorption inside the core in varying degrees, decreasing the reservoir permeability. The extent of reservoir water-sensitivity damage is positively correlated with the increment of bound water, and the extent of water-block damage is positively correlated with mobile water retention volume. The adsorption and retention of solid-phase macromolecule substance causes largest loss of core permeability, averaging about 20%, and it is main damage factor of fracturing fluids, the water-sensitivity damage causes 11% of core permeability loss, and the water-block damage causes 7% of loss. As the reservoir permeability doubles, the comprehensive damage resulted from guar gum fracturing fluid decreases by 14%. The comprehensive damage of CMG fracturing fluid to reservoir is 6.6% lower than that of HPG fracturing fluid, and the lower the reservoir permeability, the larger the gap between damage of CMG and HPG fracturing fluids. With the technology of NMR, the objective and accurate evaluation of various damages to reservoir resulted from fracturing fluids is realized, and the corresponding relation between damage mechanism and damage extent is established, which provides reference for research on improvement of fracturing fluid properties and reservoir protection measures.

References

References
1.
Xiao
,
B.
,
Jiang
,
T. X.
, and
Zhang
,
S. C.
,
2016
, “
Novel Nanocomposite Fiber-Laden Viscoelastic Fracturing Fluid for Coal Bed Methane Reservoir Stimulation
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022906
.
2.
Guo
,
T.
,
Zhang
,
S.
,
Zou
,
Y.
, and
Xiao
,
B.
,
2015
, “
Numerical Simulation of Hydraulic Fracture Propagation in Shale Gas Reservoir
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
847
856
.
3.
Barati
,
R.
, and
Liang
,
J. T.
,
2014
, “
A Review of Fracturing Fluid Systems Used for Hydraulic Fracturing of Oil and Gas Wells
,”
J. Appl. Polym. Sci.
,
131
(
16
), pp.
318
323
.
4.
Guo
,
T. K.
,
Li
,
Y. C.
,
Ding
,
Y.
,
Qu
,
Z. Q.
,
Gai
,
N. C.
, and
Rui
,
Z. H.
,
2017
, “
Evaluation of Acid Fracturing Treatments in Shale Formation
,”
Energy Fuels
,
31
(
10
), pp.
10479
10489
.
5.
Rui
,
Z.
,
Lu
,
J.
,
Zhang
,
Z.
,
Guo
,
R.
,
Ling
,
K.
,
Zhang
,
R.
, and
Patil
,
S.
,
2017
, “
A Quantitative Oil and Gas Reservoir Evaluation System for Development
,”
J. Nat. Gas Sci. Eng.
,
42
, pp.
31
39
.
6.
Sedaghat
,
M. H.
,
Ghazanfari
,
M. H.
,
Parvazdavani
,
M.
, and
Morshedi
,
S.
,
2013
, “
Experimental Investigation of Microscopic/Macroscopic Efficiency of Polymer Flooding in Fractured Heavy Oil Five-Spot Systems
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032901
.
7.
Nasr-EI-Din
,
H. A.
,
2005
, “
Formation Damage Induced by Chemical Treatments: Case Histories
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
214
224
.
8.
Rui
,
Z.
,
Li
,
C.
,
Peng
,
P.
,
Ling
,
K.
,
Chen
,
G.
,
Zhou
,
X.
, and
Chang
,
H.
,
2017
, “
Development of Industry Performance Metrics for Offshore Oil and Gas Project
,”
J. Nat. Gas Sci. Eng.
,
39
, pp.
44
53
.
9.
Yegin
,
C.
,
Zhang
,
M.
,
Talari
,
J. V.
, and
Akbulut
,
M.
,
2016
, “
Novel Hydraulic Fracturing Fluids With Improved Proppant Carrying Capacity and pH-Adjustable Proppant Deposition Behavior
,”
J. Pet. Sci. Eng.
,
145
, pp.
600
608
.
10.
Wang
,
J.
,
Liu
,
H. Q.
,
Wang
,
L.
,
Zhang
,
H. L.
,
Luo
,
H. S.
, and
Gao
,
Y.
,
2015
, “
Apparent Permeability for Gas Transport in Nanopores of Organic Shale Reservoirs Including Multiple Effects
,”
Int. J. Coal Geol.
,
152
, pp.
50
62
.
11.
Ezeakacha
,
C. P.
,
Salehi
,
S.
, and
Hayatdavoudi
,
A.
,
2017
, “
Experimental Study of Drilling Fluid's Filtration and Mud Cake Evolution in Sandstone Formations
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022912
.
12.
Wilson
,
M. J.
,
Wilson
,
L.
, and
Patey
,
I.
,
2014
, “
The Influence of Individual Clay Minerals on Formation Damage of Reservoir Sandstones: A Critical Review With Some New Insights
,”
Clay Miner.
,
49
(
2
), pp.
147
164
.
13.
Wang
,
J.
, and
Rahman
,
S. S.
,
2015
, “An Investigation of Fluid Leak-Off Due to Osmotic and Capillary Effects and Its Impact on Micro-Fracture Generation During Hydraulic Fracturing Stimulation of Gas Shale,” EUROPEC, Madrid, Spain, June 1–4,
SPE
Paper No. 174392.
14.
Potter
,
D. K.
,
Arfan
,
A. H.
,
Imhmed
,
S.
, and
Schleifer
,
N.
,
2011
, “
Quantifying the Effects of Core Cleaning, Core Flooding and Fines Migration Using Sensitive Magnetic Techniques: Implications for Permeability Determination and Formation Damage
,”
Petrophysics
,
52
, pp.
444
451
.
15.
Liu
,
G.
, and
Ehlig-Economides
,
C.
,
2015
, “Comprehensive Global Model for Before-Closure Analysis of an Injection Falloff Fracture Calibration Test,” SPE Annual Technical Conference and Exhibition, Houston, TX, Sept. 28–30,
SPE
Paper No. 174906.
16.
Bennion
,
B.
, and
Thomas
,
F. B.
,
2005
, “
Formation Damage Issues Impacting the Productivity of Low Permeability, Low Initial Water Saturation Gas Producing Formations
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
240
247
.
17.
Bahrami
,
H.
,
Rezaee
,
R.
, and
Clennell
,
B.
,
2012
, “
Water Blocking Damage in Hydraulically Fractured Tight Sand Gas Reservoirs: An Example From Perth Basin, Western Australia
,”
J. Pet. Sci. Eng.
,
88–89
, pp.
100
106
.
18.
Zhang
,
L.
,
Pu
,
C. S.
,
Cui
,
S. X.
,
Nasir
,
K.
, and
Liu
,
Y.
,
2016
, “
Experimental Study on a New Type of Water Shutoff Agent Used in Fractured Low Permeability Reservoir
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012907
.
19.
Ishida
,
T.
,
Chen
,
Q.
,
Mizuta
,
Y.
, and
Roegiers
,
J. C.
,
2004
, “
Influence of Fluid Viscosity on the Hydraulic Fracturing Mechanism
,”
ASME J. Energy Resour. Technol.
,
126
(
3
), pp.
190
200
.
20.
Ren
,
Z.
,
Wu
,
X.
,
Liu
,
D.
,
Rui
,
R.
,
Guo
,
W.
, and
Chen
,
Z.
,
2016
, “
Semi-Analytical Model of the Transient Pressure Behavior of Complex Fracture Networks in Tight Oil Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
35
(Pt. A), pp.
497
508
.
21.
Zheng
,
C.
,
Zhu
,
M. M.
,
Zhou
,
W. X.
, and
Zhang
,
D. K.
,
2017
, “
A Preliminary Investigation Into the Characterization of Asphaltenes Extracted From an Oil Sand and Two Vacuum Residues From Petroleum Refining Using Nuclear Magnetic Resonance, DEPT, and MALDI-TOF
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032905
.
22.
Meng
,
M. M.
,
Ge
,
H. K.
,
Ji
,
W. M.
,
Shen
,
Y. H.
, and
Su
,
S.
,
2015
, “
Monitor the Process of Shale Spontaneous Imbibition in Co-Current and Counter-Current Displacing Gas by Using Low Field Nuclear Magnetic Resonance Method
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
336
345
.
23.
Rui
,
Z.
,
Han
,
G.
,
Zhang
,
H.
,
Wang
,
S.
,
Pu
,
H.
, and
Ling
,
K.
,
2017
, “
A New Model to Evaluate Two Leak Points in a Gas Pipeline
,”
J. Nat. Gas Sci. Eng.
,
46
, pp.
491
497
.
24.
Liu
,
D. Q.
,
Ge
,
H. K.
,
Liu
,
J. R.
,
Shen
,
Y. H.
,
Wang
,
Y. R.
,
Liu
,
Q.
,
Jin
,
C.
, and
Zhang
,
Y. J.
,
2016
, “
Experimental Investigation on Aqueous Phase Migration in Unconventional Gas Reservoir Rock Samples by Nuclear Magnetic Resonance
,”
J. Nat. Gas Sci. Eng.
,
36
, pp.
837
851
.
25.
Xiao
,
L.
,
Mao
,
Z. Q.
,
Zou
,
C. C.
,
Jin
,
Y.
, and
Zhu
,
J. C.
,
2016
, “
A New Methodology of Constructing Pseudo Capillary Pressure (Pc) Curves From Nuclear Magnetic Resonance (NMR) Logs
,”
J. Pet. Sci. Eng.
,
147
, pp.
154
167
.
26.
Toumelin
,
E.
,
Verdín
,
C. T.
,
Sun
,
B. Q.
, and
Dunn
,
K. J.
,
2007
, “
Random-Walk Technique for Simulating NMR Measurements and 2D NMR Maps of Porous Media With Relaxing and Permeable Boundaries
,”
J. Magn. Reson.
,
188
(
1
), pp.
83
96
.
27.
Ji
,
W.
,
Song
,
U.
,
Rui
,
Z.
,
Meng
,
M.
, and
Huang
,
H.
,
2017
, “
Pore Characterization of Isolated Organic Matter From High Matured Gas Shale Reservoir
,”
Int. J. Coal Geol.
,
174
, pp.
31
40
.
28.
Guo
,
T. K.
,
Zhang
,
S. C.
,
Ge
,
H. K.
,
Wang
,
X. Q.
,
Lei
,
X.
, and
Xiao
,
B.
,
2015
, “
A New Method for Evaluation of Fracture Network Formation Capacity of Rock
,”
Fuel
,
140
, pp.
778
787
.
29.
Wang
,
L.
,
Wang
,
S.
,
Zhang
,
R.
, and
Rui
,
Z.
,
2017
, “
Review of Multi-Scale and Multi-Physical Simulation Technologies for Shale and Tight Gas Reservoir
,”
J. Nat. Gas Sci. Eng.
,
37
, pp.
560
578
.
30.
Cui
,
G.
,
Ren
,
S.
,
Rui
,
Z.
,
Ezekiel
,
J.
,
Zhang
,
L.
, and
Wang
,
H.
,
2017
, “
The Influence of Complicated Fluid-Rock Interactions on the Geothermal Exploitation in the CO2 Plume Geothermal System
,”
Appl. Energy
, (in press).
31.
Huang
,
J. G.
,
Xu
,
K. M.
,
Guo
,
S. B.
, and
Guo
,
H. W.
,
2015
, “
Comprehensive Study on Pore Structures of Shale Reservoirs Based on SEM, NMR and X-CT
,”
Geoscience
,
29
(
1
), pp.
199
205
.
32.
Rui
,
Z.
,
Peng
,
F.
,
Chang
,
H.
,
Ling
,
K.
,
Chen
,
G.
, and
Zhou
,
X.
,
2017
, “
Investigation Into the Performance of Oil and Gas Projects
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
12
20
.
33.
Li
,
Y.
,
Jia
,
D.
,
Rui
,
Z.
,
Peng
,
J.
,
Fu
,
C.
, and
Zhang
,
J.
,
2017
, “
Evaluation Method of Rock Brittleness Based on Statistical Constitutive Relations for Rock Damage
,”
J. Pet. Sci. Eng.
,
153
, pp.
123
132
.
34.
Szopinski
,
D.
,
Kulicke
,
W. M.
, and
Luinstra
,
G. A.
,
2015
, “
Structure–Property Relationships of Carboxymethyl Hydroxypropyl Guar Gum in Water and a Hyperentanglement Parameter
,”
Carbohydr. Polym.
,
119
, pp.
159
166
.
35.
Hurnaus
,
T.
, and
Plank
,
J.
,
2015
, “
Behavior of Titania Nanoparticles in Cross-Linking Hydroxypropyl Guar Used in Hydraulic Fracturing Fluids for Oil Recovery
,”
Energy Fuels
,
29
(
6
), pp.
3601
3608
.
36.
Xu
,
Z. D.
,
Dai
,
Y. W.
, and
Li
,
L. S.
,
2016
, “
Performance Evaluation on JK-1002 High Temperature Carboxymethyl Gum Fracturing Fluid and Its Application in Jilin Oilfield
,”
J. Yangtze Univ. (Nat. Sci. Ed.)
,
13
(
8
), pp.
64
69
.
37.
Jiang
,
J. F.
, and
Lu
,
H. J.
,
2009
, “
Research and Application of New Carboxymethyl Fracture Fluid
,”
Oil Drill. Prod. Technol.
,
31
(
5
), pp.
65
68
.
38.
Sun
,
J.
,
Gamboa
,
E.
,
Schechter
,
D.
, and
Rui
,
Z.
,
2016
, “
An Integrated Workflow for Characterization and Simulation of Complex Fracture Networks Utilizing Microseismic and Horizontal Core Data
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
1347
1360
.
You do not currently have access to this content.