The application of water flooding is not successful for the development of low permeability reservoirs due to the fine pore sizes and the difficulty of water injection operation. CO2 can dissolve readily in crude oil and highly improve the mobility of crude oil, which makes CO2 flooding an effective way to the development of the ultralow-permeability reservoirs. The regularities of various CO2 displacement methods were studied via experiments implemented on cores from Chang 8 Formation of Honghe Oilfield. The results show that CO2 miscible displacement has the minimum displacement differential pressure and the maximum oil recovery; CO2-alternating-water miscible flooding has lower oil recovery, higher drive pressure, and relatively lower gas-oil ratio; water flooding has the minimum oil recovery and the maximum driving pressure. A large amount of oil still can be produced under a high gas-oil ratio condition through CO2 displacement method. This fact proves that the increase of gas-oil ratio is caused by the production of dissolved CO2 in oil rather than the free gas breakthrough. At the initial stage of CO2 injection, CO2 does not improve the oil recovery immediately. As the injection continues, the oil recovery can be improved rapidly. This phenomenon suggests that when CO2 displacement is performed at high water cut period, the water cut does not decrease immediately and will remain high for a period of time, then a rapid decline of water cut and increase of oil production can be observed.

References

1.
Ren
,
B.
,
Ren
,
S.
,
Zhang
,
L.
,
Chen
,
G.
, and
Zhang
,
H.
,
2016
, “
Monitoring on CO2, Migration in a Tight Oil Reservoir During CCS-EOR in Jilin Oilfield China
,”
Energy
,
98
, pp.
108
121
.
2.
Wang
,
H.
,
Liao
,
X.
,
Dou
,
X.
,
Shang
,
B.
,
Ye
,
H.
,
Zhao
,
D.
, Liao, C., and Chen, X.,
2014
, “
Potential Evaluation of CO2 Sequestration and Enhanced Oil Recovery of Low Permeability Reservoir in the Junggar Basin, China
,”
Energy Fuel
,
28
(
5
), pp.
3281
3291
.
3.
Zhang
,
S.
,
2009
, “
NMR Study on Porous Flow Mechanisms in Low Permeability Reservoirs With CO2 Flooding
,”
J. Shenzhen Univ. Sci. Eng.
,
26
(
3
), pp.
228
233
.
4.
Bennion
,
D. B.
, and
Bachu
,
S.
,
2007
, “
Permeability and Relative Permeability Measurements at Reservoir Conditions for CO2-Water Systems in Ultra-Low Permeability Confining Caprocks
,”
Society of Petroleum Engineers
,
London
.
5.
Hill
,
L. B.
,
Hovorka
,
S.
, and
Melzer
,
S.
,
2013
, “
Geological Carbon Storage Through Enhanced Oil Recovery
,”
Energy Procedia
,
37
, pp.
6808
6830
.
6.
Zhao
,
F.
,
Hao
,
H.
,
Hou
,
J.
,
Hou
,
L.
, and
Song
,
Z.
,
2015
, “
CO2 Mobility Control and Sweep Efficiency Improvement Using Starch Gel or Ethylene Diamine in Ultra-Low Permeability Oil Layers With Different Types of Heterogeneity
,”
J. Pet. Sci.
,
133
, pp.
52
65
.
7.
Bachu
,
S.
,
Shaw
,
J. C.
, and
Pearson
,
R. M.
,
2004
, “
Estimation of Oil Recovery and CO2 Storage Capacity in CO2 EOR Incorporating the Effect of Underlying Aquifers
,” SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, Apr. 17–21,
SPE
Paper No. SPE-89340-MS.
8.
Li
,
Z.
, and
Gu
,
Y.
,
2014
, “
Optimum Timing for Miscible CO2-EOR After Waterflooding in a Tight Sandstone Formation
,”
Energy Fuels
,
28
(
1
), pp.
488
499
.
9.
Damen
,
K.
,
Faaij
,
A.
,
Bergen
,
F. V.
, and
Lysen
,
E.
,
2003
, “
Worldwide Selection of Early Opportunities for CO2-EOR and CO2-ECBM (2): Selection and Analysis of Promising Cases
,”
International Conference on Greenhouse Gas Control Technologies
, Kyoto, Japan, Oct. 1–4, pp.
645
650
.
10.
Mohebbifar
,
M.
,
Ghazanfari
,
M. H.
, and
Vossoughi
,
M.
,
2015
, “
Experimental Investigation of Nano-Biomaterial Applications for Heavy Oil Recovery in Shaly Porous Models: A Pore-Level Study
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
014501
.
11.
Shokoya
,
O. S.
,
Moore
,
R. G.
,
Maini
,
B. B.
,
Pooladi-Darvish
,
M.
, and
Chakma
,
A. K.
,
2002
, “
The Mechanism of Flue Gas Injection for Enhanced Light Oil Recovery
,”
ASME J. Energy Resour. Technol.
,
126
(
2
), pp.
107
113
.
12.
Dong-Xia
,
L. I.
,
Yu-Liang
,
S. U.
,
Gao
,
H. T.
, and
Geng
,
Y. H.
,
2010
, “
Fluid Parameter Modification and Affecting Factors During Immiscible Drive With CO2
,”
J. Chin. Univ. Pet.
,
34
(
5
), pp.
104
108
.
13.
Su
,
Y. L.
,
Wu
,
X. D.
,
Hou
,
Y. H.
, and
Hou
,
Z. F.
,
2011
, “
Mechanism of CO2 Miscible Displacement in Low Permeability Reservoir and Influencing Factor
,”
J. Chin. Univ. Pet.
,
35
(
3
), pp.
99
102
.
14.
Li
,
X. L.
,
Li
,
Z. Q.
,
Guo
,
P.
,
LI
,
H. C.
, and
LI
,
X. S.
,
2004
, “
Long Core Physical Simulation for CO2 Miscible Displacement
,”
Pet. Explor. Dev.
,
31
(5), pp.
102
104
.
15.
Huang
,
Y. Z.
,
1998
,
Low Permeability Reservoir Percolation Mechanism
,
Petroleum Industry Press
,
Beijing, China
, Chap. 3.
16.
Yang
,
S. L.
,
1998
, “The Experimental Research on the Oil Recovery by CO2 Injection,” Ph.D. thesis, China University of Petroleum, Beijing, China.
17.
Chung
,
F. T. H.
,
Johnes
,
R. A.
, and
Hai
,
T. N.
,
1988
, “
Measurements and Correlations of the Physical Properties of CO2 Heavy Crude Oil Mixtures
,”
SPE Reservoir Eval. Eng.
,
3
(
3
), pp.
822
828
.
18.
Stalkup
,
F. I.
,
1987
, “
Displacement Behavior of the Condensing/Vaporizing Gas Drive Process
,” The 62nd Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Dallas, TX, Sept. 27–30,
SPE
Paper No. SPE-16715-MS.
19.
Holm
,
L. W.
,
1987
, “
Evolution of the Carbon Dioxide Flooding Processes
,”
J. Pet. Technol.
,
39
(
11
), pp.
1337
1342
.
20.
Holm
,
L. W.
,
1986
, “
Miscibility and Miscible Displacement
,”
J. Pet. Technol.
,
38
(
8
), pp.
817
825
.
21.
Orr
,
F. M.
, Jr
., and
Silva
,
M. K.
,
1987
, “
Effect of Oil Composition on Minimum Miscibility Pressure—Part 2: Correlation
,”
SPE Reservoir Eng.
,
2
(
4
), pp.
479
491
.
22.
Stalkup
,
F. I.
, Jr.
,
1983
, “
Status of Miscible Displacement
,”
J Pet. Technol.
,
35
(
4
), pp.
815
826
.
23.
Christiansen
,
R. L.
, and
Kim
,
H.
,
1986
, “Method of Determining the Minimum Level of Gas Enrichment for a Miscible Flood,” U.S. Patent, No. 4621522.
24.
Orr
,
F. M.
, Jr.
,
Yu
,
A. D.
, and
Lien
,
C. L.
,
1981
, “
Phase Behavior of CO2 and Crude Oil in Low Temperature Reservoir
,”
SPE J.
,
21
(
4
), pp.
480
492
.
25.
Ren
,
B.
,
Zhang
,
L.
,
Huang
,
H.
,
Ren
,
S.
,
Chen
,
G.
, and
Zhang
,
H.
,
2015
, “
Performance Evaluation and Mechanisms Study of Near-Miscible CO2, Flooding in a Tight Oil Reservoir of Jilin Oilfield China
,”
J. Nat. Gas Sci. Eng.
,
27
(
3
), pp.
1796
1805
.
26.
Han
,
T.
,
Hong
,
H.
,
Jin
,
H.
, and
Zhang
,
C.
,
2011
, “An Advanced Power-Generation System With CO2 Recovery Integrating DME Fueled Chemical-Looping Combustion,”
ASME J. Energy Resour. Technol.
,
133
(1), p. 012201.
27.
Mohamed
,
I. M.
,
He
,
J.
, and
Nasr-El-Din
,
H. A.
,
2013
, “
Experimental Analysis of CO2 Injection on Permeability of Vuggy Carbonate Aquifers
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013301
.
28.
Seo
,
J. G.
,
2005
, “
Experimental and Simulation Studies of Sequestration of Supercritical Carbon Dioxide in Depleted Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
127
(
1
), pp. 6–8.
29.
Xu
,
X.
,
Saeedi
,
A.
, and
Liu
,
K. Y.
,
2017
, “
Experimental Study on a Novel Foaming Formula for CO2 Foam Flooding
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022902
.
30.
Guo
,
L.
,
2011
, “
Carbon Dioxide Miscible Flooding Experiment of Bonan Oilfield 34 Block
,”
Pet. Geol. Recovery Effic.
,
18
(
1
), pp.
37
40
.
31.
Torabi
,
F.
,
Jamaloei
,
B. Y.
,
Zarivnyy
,
O.
,
Paquin
,
B. A.
, and
Rumpel
,
N. J.
,
2012
, “
The Evaluation of Variable-Injection Rate Waterflooding, Immiscible CO2 Flooding, and Water-Alternating-CO2 Injection for Heavy Oil Recovery
,”
Pet. Sci. Technol.
,
30
(
16
), pp.
1656
1669
.
32.
Chen
,
S.
,
Li
,
H.
,
Yang
,
D.
, and
Tontiwachwuthikul
,
P.
,
2010
, “
Optimal Parametric Design for Water Alternating-Gas (Wag) Process in a CO2 Miscible Flooding Reservoir
,”
J. Can Pet. Technol.
,
49
(
10
), pp.
75
82
.
You do not currently have access to this content.