A numerical investigation was conducted to explore the kinetic effects of methanol addition on the formation and consumption of formaldehyde and benzene in premixed stoichiometric n-heptane/air flames at atmospheric pressure. The flame modeling was performed by solving the premixed flame model with a comprehensive kinetic scheme of hydrocarbon fuels. We studied the species distributions, formation temperatures, temperature sensitivities, reaction contributions, and the rates of production and consumption for formaldehyde and benzene. Results showed that formaldehyde and benzene were produced in two temperature zones and the accumulation effect in the low-temperature zone was the most important factor for the peak concentrations of them in flames. When methanol was added into n-heptane/air flames, cross-reactions were hardly found in the formation routes of formaldehyde and benzene. Both the increased peak concentration and the decreased formation temperature of formaldehyde were primarily attributed to the fact that CH3O (+M) <=>CH2O + H (+M) and CH2OH + O2<=>CH2O + HO2 were promoted in low-temperature zone. Methanol addition decreased the rates of production and consumption of benzene proportionally, and served as a diluent fuel in benzene formation and consumption. CH3, CH3O, CH2OH, C3H3, and A-C3H5 were the most important precursors for the formation of formaldehyde and benzene. The conversion rates of these species into formaldehyde and benzene were explored as well. Results showed that methanol addition suppressed the conversion of C3 species into benzene, but it hardly showed obvious effect on the conversion of CH3, CH3O, and CH2OH into formaldehyde.

References

References
1.
Balat
,
M.
,
2005
, “
Current Alternative Engine Fuels
,”
Energy Sources
,
27
(
6
), pp.
569
577
.
2.
Gong
,
C. M.
,
Huang
,
K.
,
Jia
,
J. L.
,
Su
,
Y.
,
Gao
,
Q.
, and
Liu
,
X. J.
,
2011
, “
Regulated Emissions From a Direct-Injection Spark-Ignition Methanol Engine
,”
Energy
,
36
(
5
), pp.
3379
3387
.
3.
Kumar
,
R. S. K.
, and
Suresh
,
K.
,
2013
, “
Effect of Methanol Blending With Pongamia Pinnata Biodiesel and Diesel Blends on Engine Performance and Exhaust Emission Characteristics of an Unmodified Compression Ignition Engine
,”
Int. J. Ambient Energy
,
36
(
2
), pp.
70
75
.
4.
Zhang
,
C.
,
Ge
,
Y.
,
Tan
,
J.
,
Li
,
L.
,
Peng
,
Z.
,
Wang
,
X.
, and
Li
,
M.
,
2017
, “
Emissions From Light-Duty Passenger Cars Fueled With Ternary Blend of Gasoline, Methanol and Ethanol
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062202
.
5.
Supp
,
D. I. E.
,
1990
,
How to Produce Methanol From Coal
,
Springer-Verlag
, Berlin.
6.
Liu
,
J.
, and
Ma
,
X.
,
2009
, “
The Analysis on Energy and Environmental Impacts of Microalgae-Based Fuel Methanol in China
,”
Energy Policy
,
37
(
4
), pp.
1479
1488
.
7.
Yao
,
C.
,
2015
, “
The Impact of Intake Air Temperature on Performance and Exhaust Emissions of a Diesel Methanol Dual Fuel Engine
,”
Fuel
,
162
, pp.
101
110
.
8.
Yusof
,
A. F.
,
Mamat
,
R.
,
Mat Yasin
,
M. H.
,
Abdullah
,
A. A.
, and
Aziz
,
A.
,
2013
, “
Comparative Study of Particulate Matter (PM) Emissions in Diesel Engine Using Diesel-Methanol Blends
,”
Appl. Mech. Mater.
,
465–466
, pp.
1255
1261
.
9.
Kobayashi
,
Y.
,
Furuhata
,
T.
,
Amagai
,
K.
, and
Arai
,
M.
,
2008
, “
Soot Precursor Measurements in Benzene and Hexane Diffusion Flames
,”
Combust. Flame
,
154
(
3
), pp.
346
355
.
10.
Richter
,
H.
, and
Howard
,
J. B.
,
2000
, “
Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot—A Review of Chemical Reaction Pathways
,”
Prog. Energy Combust. Sci.
,
26
(
4–6
), pp.
565
608
.
11.
Miller
,
J. A.
,
Pilling
,
M. J.
, and
Troe
,
J.
,
2005
, “
Unravelling Combustion Mechanisms Through a Quantitative Understanding of Elementary Reactions
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
43
88
.
12.
Yang
,
B.
,
Li
,
Y.
,
Wei
,
L.
,
Huang
,
C.
,
Wang
,
J.
,
Tian
,
Z.
,
Yang
,
R.
,
Sheng
,
L.
,
Zhang
,
Y.
, and
Qi
,
F.
,
2007
, “
An Experimental Study of the Premixed Benzene/Oxygen/Argon Flame With Tunable Synchrotron Photoionization
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
555
563
.
13.
Law
,
M. E.
,
Westmoreland
,
P. R.
,
Cool
,
T. A.
,
Wang
,
J.
,
Hansen
,
N.
,
Taatjes
,
C. A.
, and
Kasper
,
T.
,
2007
, “
Benzene Precursors and Formation Routs in a Stoichiometric Cyclohexane Flame
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
565
573
.
14.
Li
,
W.
,
Law
,
M. E.
,
Westmoreland
,
P. R.
,
Kasper
,
T.
,
Hansen
,
N.
, and
Kohse-Höinghaus
,
K.
,
2011
, “
Multiple Benzene-Formation Paths in a Fuel-Rich Cyclohexane Flame
,”
Combust. Flame
,
158
(
11
), pp.
2077
2089
.
15.
Salavati-Zadeh
,
A.
,
Esfahanian
,
V.
, and
Afshari
,
A.
,
2013
, “
Detailed Kinetic Modeling of Soot-Particle and Key-Precursor Formation in Laminar Premixed and Counterflow Diffusion Flames of Fossil Fuel Surrogates
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
031101
.
16.
Moiz
,
A. A.
,
Cung
,
K. D.
, and
Lee
,
S. Y.
,
2017
, “
Simultaneous Schlieren-PLIF Studies for Ignition and Soot Luminosity Visualization With Close-Coupled High Pressure Double Injections of n-Dodecane
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012207
.
17.
Chen
,
G.
,
Yu
,
W.
,
Jiang
,
X.
,
Huang
,
Z.
,
Wang
,
Z.
, and
Cheng
,
Z.
,
2013
, “
Experimental and Modeling Study on the Influences of Methanol on Premixed Fuel-Rich n-Heptane Flames
,”
Fuel
,
103
(
1
), pp.
467
472
.
18.
Chen
,
G.
,
Yu
,
W.
,
Fu
,
J.
,
Mo
,
J.
,
Huang
,
Z.
,
Yang
,
J.
,
Wang
,
Z.
,
Jin
,
H.
, and
Qi
,
F.
,
2012
, “
Experimental and Modeling Study of the Effects of Adding Oxygenated Fuels to Premixed n-Heptane Flames
,”
Combust. Flame
,
159
(
7
), pp.
2324
2335
.
19.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2015
, “
Experimental Investigations of Particulate Size and Number Distribution in an Ethanol and Methanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012201
.
20.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press
, Oxford, UK.
21.
Turns
,
S. R.
,
2000
,
An Introduction to Combustion: Concepts and Applications
,
WCB/McGraw-Hill
, Singapore.
22.
Yao
,
C. D.
,
Qi
,
X.
,
Yang
,
X. L.
, and
Chen
,
X. P.
,
2010
, “
Characteristic of Regulated Emissions and Formaldehyde Emission From Turbocharged Inter-Cooled Diesel Engine With Diesel/Methanol Compound Combustion Mode
,”
J. Combust. Sci. Technol.
,
16
(
2
), pp.
155
159
.
23.
Ren
,
Y. K.
,
Yuan
,
Y. N.
,
Sun
,
Z. Y.
, and
Chen
,
L. J.
,
2011
, “
Measurement of Carbonyl Pollutants for Methanol-Diesel Blended Fuel
,”
Veh. Engine
,
192
(
1
), pp.
85
87
.
24.
Wei
,
L.
,
Yao
,
C.
,
Wang
,
Q.
,
Wang
,
P.
, and
Han
,
G.
,
2015
, “
Combustion and Emission Characteristics of a Turbocharged Diesel Engine Using High Premixed Ratio of Methanol and Diesel Fuel
,”
Fuel
,
140
, pp.
156
163
.
25.
Dias
,
V.
,
Duynslaegher
,
C.
,
Contino
,
F.
,
Vandooren
,
J.
, and
Jeanmart
,
H.
,
2012
, “
Experimental and Modeling Study of Formaldehyde Combustion in Flames
,”
Combust. Flame
,
159
(
5
), pp.
1814
1820
.
26.
Yamada
,
H.
,
Suzaki
,
K.
,
Sakanashi
,
H.
,
Choi
,
N.
, and
Tezaki
,
A.
,
2005
, “
Kinetic Measurements in Homogeneous Charge Compression of Dimethyl Ether: Role of Intermediate Formaldehyde Controlling Chain Branching in the Low-Temperature Oxidation Mechanism
,”
Combust. Flame
,
140
(
1–2
), pp.
24
33
.
27.
Xu
,
H.
,
2011
, “
Experimental Study of the Effect of Methanol on the n-Heptane Premixed Laminar Flame
,”
J. Eng. Thermophys.
,
32
(
4
), pp.
715
719
.
28.
Yilmaz
,
N.
, and
Donaldson
,
A. B.
,
2007
, “
Modeling of Chemical Processes in a Diesel Engine With Alcohol Fuels
,”
ASME J. Energy Resour. Technol.
,
129
(
4
), pp.
355
359
.
29.
Chen
,
L.
, and
Battaglia
,
F.
,
2015
, “
The Effects of Fuel Mixtures in Nonpremixed Combustion for a Bluff-Body Flame
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022204
.
30.
Tan
,
J. Y.
,
Bonatesta
,
F.
,
Ng
,
H. K.
, and
Gan
,
S.
,
2016
, “
Developments in Computational Fluid Dynamics Modelling of Gasoline Direct Injection Engine Combustion and Soot Emission With Chemical Kinetic Modelling
,”
Appl. Therm. Eng.
,
107
(
C
), pp.
936
959
.
31.
Vourliotakis
,
G.
,
Skevis
,
G.
, and
Founti
,
M. A.
,
2015
, “
Some Aspects of Combustion Chemistry of C1–C2 Oxygenated Fuels in Low Pressure Premixed Flames
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
437
445
.
32.
Kee
,
R. J.
,
Grcar
,
J. F.
,
Smooke
,
M.
,
Miller
,
J.
, and
Meeks
,
E.
,
1985
, “
Premix: A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND 85-8240
.
33.
Blanquart
,
G.
,
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2009
, “
Chemical Mechanism for High Temperature Combustion of Engine Relevant Fuels With Emphasis on Soot Precursors
,”
Combust. Flame
,
156
(
3
), pp.
588
607
.
34.
Holley
,
A. T.
,
Dong
,
Y.
,
Andac
,
M. G.
, and
Egolfopoulos
,
F. N.
,
2006
, “
Extinction of Premixed Flames of Practical Liquid Fuels: Experiments and Simulations
,”
Combust. Flame
,
144
(
3
), pp.
448
460
.
35.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F. L.
, Jr.
, and
S
,
J. J.
,
2007
, “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinet.
,
39
(
3
), pp.
109
136
.
36.
Liao
,
S. Y.
,
Li
,
H. M.
,
Mi
,
L.
,
Shi
,
X. H.
,
Wang
,
G.
,
Cheng
,
Q.
, and
Yuan
,
C.
,
2011
, “
Development and Validation of a Reduced Chemical Kinetic Model for Methanol Oxidation
,”
Energy Fuels
,
25
(
1
), pp.
60
71
.
37.
Cruz
,
A. P. D.
,
Pera
,
C.
,
Anderlohr
,
J.
,
Bounaceur
,
R.
, and
Battinleclerc
,
F.
,
2009
, “
A Complex Chemical Kinetic Mechanism for the Oxidation of Gasoline Surrogate Fuels: n-Heptane, Iso-Octane and Toluene—Mechanism Development and Validation
,”
European Combustion Meeting
, Budapest, Hungary, Mar. 30–Apr. 2.
You do not currently have access to this content.