Two waste biomass materials, pine needle (PN) and corn stalk (CS), were pyrolyzed at different temperatures (200–900 °C). The organic functional groups and carbonaceous structure of the biomass chars were characterized by Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, respectively. The combustion characteristics and kinetics of biomass chars were investigated by thermogravimetric analysis (TGA). The content of carbon-, hydrogen-, and oxygen-containing functional groups in the biomass samples decreases with an increase in preparation temperature, leading to more aromatic macromolecular structure at elevated pyrolysis temperatures. With increasing pyrolysis temperature, the comprehensive combustibility index (S) of both chars related to combustion reactivity generally decreases especially for CS char because of the loss of active groups. However, the Raman spectra show that the degree of order decreases with increasing pyrolysis temperature from 400 to 700 °C because of the generation of isolated sp2 carbon.

References

References
1.
Zhou
,
X. P.
,
Wang
,
F.
,
Hu
,
H. W.
,
Yang
,
L.
,
Guo
,
P. H.
, and
Xiao
,
B.
,
2011
, “
Assessment of Sustainable Biomass Resource for Energy Use in China
,”
Biomass Bioenergy
,
35
(
1
), pp.
1
11
.
2.
Liao
,
C. P.
,
Yan
,
Y. J.
,
Wu
,
C. Z.
, and
Huang
,
H. T.
,
2004
, “
Study on the Distribution and Quantity of Biomass Residues Resource in China
,”
Biomass Bioenergy
,
27
(
2
), pp.
111
117
.
3.
Mayor
,
J. R.
, and
Williams
,
A.
,
2010
, “
Residence Time Influence on the Fast Pyrolysis of Loblolly Pine Biomass
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
041801
.
4.
Ma
,
J.
, and
Hemmers
,
O.
,
2011
, “
Technoeconomic Analysis of Microalgae Cofiring Process for Fossil Fuel-Fired Power Plants
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
011801
.
5.
Davies
,
A.
,
Soheilian
,
R.
,
Zhuo
,
C. W.
, and
Levendis
,
Y. A.
,
2013
, “
Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021101
.
6.
Wang
,
T. P.
,
Yin
,
J.
,
Liu
,
Y.
,
Lu
,
Q.
, and
Zheng
,
Z. M.
,
2014
, “
Effects of Chemical Inhomogeneity on Pyrolysis Behaviors of Corn Stalk Fractions
,”
Fuel
,
129
, pp.
111
115
.
7.
Boateng
,
A. A.
,
Mullen
,
C. A.
,
Osgood-Jacobs
,
L.
,
Carlson
,
P.
, and
Macken
,
N.
,
2012
, “
Mass Balance, Energy, and Exergy Analysis of Bio-Oil Production by Fast Pyrolysis
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
042001
.
8.
Sutcu
,
H.
,
2008
, “
The Examination of Liquid, Solid, and Gas Products Obtained by the Pyrolysis of the Three Different Peat and Reed Samples
,”
ASME J. Energy Resour. Technol.
,
130
(
2
), p.
021401
.
9.
Demirbas
,
A.
,
2007
, “
The Influence of Temperature on the Yields of Compounds Existing in Bio-Oils Obtained From Biomass Samples Via Pyrolysis
,”
Fuel Process. Technol.
,
88
(
6
), pp.
591
597
.
10.
Wu
,
C. F.
,
Budarin
,
V. L.
,
Gronnow
,
M. J.
,
Bruyn
,
M. D.
,
Onwudili
,
J. A.
,
Clark
,
J. H.
, and
Williams
,
P. T.
,
2014
, “
Conventional and Microwave-Assisted Pyrolysis of Biomass Under Different Heating Rates
,”
J. Anal. Appl. Pyrolysis
,
107
, pp.
276
283
.
11.
Zhang
,
H. Y.
,
Xiao
,
R.
,
Wang
,
D. H.
,
He
,
G. Y.
,
Shao
,
S. S.
,
Zhang
,
J. B.
, and
Zhong
,
Z. P.
,
2011
, “
Biomass Fast Pyrolysis in a Fluidized Bed Reactor Under N2, CO2, CO, CH4 and H2 Atmospheres
,”
Bioresour. Technol.
,
102
(
5
), pp.
4258
4264
.
12.
Aysu
,
T.
,
2015
, “
Catalytic Pyrolysis of Alcea Pallida Stems in a Fixed-Bed Reactor for Production of Liquid Bio-Fuels
,”
Bioresour. Technol.
,
191
, pp.
253
262
.
13.
Yang
,
H. P.
,
Yan
,
R.
,
Chen
,
H. P.
,
Lee
,
D. H.
, and
Zheng
,
C. G.
,
2007
, “
Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis
,”
Fuel
,
86
(
12–13
), pp.
1781
1788
.
14.
Li
,
K.
,
Zhang
,
L. Q.
,
Zhu
,
L.
, and
Zhu
,
X. F.
,
2017
, “
Comparative Study on Pyrolysis of Lignocellulosic and Algal Biomass Using Pyrolysis-Gas Chromatography/Mass Spectrometry
,”
Bioresour. Technol
,
234
, pp.
48
52
.
15.
Xu
,
M. Z.
, and
Sheng
,
C. D.
,
2012
, “
Influences of the Heat-Treatment Temperature and Inorganic Matter on Combustion Characteristics of Cornstalk Biochars
,”
Energy Fuels
,
26
(
1
), pp.
209
218
.
16.
Min
,
F. F.
,
Zhang
,
M. X.
,
Zhang
,
Y.
,
Cao
,
Y.
, and
Pan
,
W. P.
,
2011
, “
An Experimental Investigation Into the Gasification Reactivity and Structure of Agricultural Waste Chars
,”
J. Anal. Appl. Pyrolysis
,
92
(
1
), pp.
250
257
.
17.
Gil
,
M. V.
,
Riaza
,
J.
,
Álvarez
,
L.
,
Pevida
,
C.
, and
Rubiera
,
F.
,
2015
, “
Biomass Devolatilization at High Temperature Under N2 and CO2: Char Morphology and Reactivity
,”
Energy
,
91
, pp.
655
662
.
18.
Siengchum
,
T.
,
Isenberg
,
M.
, and
Chuang
,
S. S. C.
,
2013
, “
Fast Pyrolysis of Coconut Biomass–An FFTIR Study
,”
Fuel
,
105
, pp.
559
565
.
19.
Asadullah
,
M.
,
Zhang
,
S.
, and
Li
,
C. Z.
,
2010
, “
Evaluation of Structural Features of Chars From Pyrolysis of Biomass of Different Particle Sizes
,”
Fuel Process. Technol.
,
91
(
8
), pp.
877
881
.
20.
Wu
,
H. W.
,
Yip
,
K.
,
Tian
,
F. J.
,
Xie
,
Z. L.
, and
Li
,
C. Z.
,
2009
, “
Evolution of Char Structure During the Steam Gasification of Biochars Produced From the Pyrolysis of Various Mallee Biomass Components
,”
Ind. Eng. Chem. Res.
,
48
(
23
), pp.
10431
10438
.
21.
Azargohar
,
R.
,
Nanda
,
S.
,
Kozinski
,
J. A.
,
Dalai
,
A. K.
, and
Sutarto
,
R.
,
2014
, “
Effects of Temperature on the Physicochemical Characteristics of Fast Pyrolysis Bio-Chars Derived From Canadian Waste Biomass
,”
Fuel
,
125
, pp.
90
100
.
22.
Pastor-Villegas
,
J.
,
Durán-Valle
,
C. J.
,
Valenzuela-Calahorro
,
C.
, and
Gómez-Serrano
,
V.
,
1998
, “
Organic Chemical Structure and Structural Shrinkage of Chars Prepared From Rockrose
,”
Carbon
,
36
(
9
), pp.
1251
1256
.
23.
Guizani
,
C.
,
Jeguirim
,
M.
,
Gadiou
,
R.
,
Sanz
,
F. J. E.
, and
Salvador
,
S.
,
2016
, “
Biomass Char Gasification by H2O, CO2 and Their Mixture: Evolution of Chemical, Textural and Structural Properties of the Chars
,”
Energy
,
112
, pp.
133
145
.
24.
Kreitzberg
,
T.
,
Haustein
,
H. D.
,
Gövert
,
B.
, and
Kneer
,
R.
,
2016
, “
Investigation of Gasification Reaction of Pulverized Char Under N2/CO2 Atmosphere in a Small-Scale Fluidized Bed Reactor
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042207
.
25.
Van Soest
,
P. J.
,
Robertson
,
J. B.
, and
Lewis
,
B. A.
,
1991
, “
Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition
,”
J. Dairy Sci.
,
74
(
10
), pp.
3583
3597
.
26.
Singh
,
R. K.
, and
Singh
,
A. K.
,
2013
, “
Optimization of Reaction Conditions for Preparing Carboxymethyl Cellulose From Corn Cobic Agricultural Waste
,”
Waste Biomass Valorization
,
4
(
1
), pp.
129
137
.
27.
Cai
,
W. F.
, and
Liu
,
R. H.
,
2016
, “
Performance of a Commercial-Scale Biomass Fast Pyrolysis Plant for Bio-Oil Production
,”
Fuel
,
182
, pp.
677
686
.
28.
El-Hendawy
,
A. N. A.
,
2006
, “
Variation in the FTIR Spectra of a Biomass Under Impregnation, Carbonization and Oxidation Conditions
,”
J. Anal. Appl. Pyrolysis
,
75
(
2
), pp.
159
166
.
29.
Sharma
,
R. K.
,
Wooten
,
J. B.
,
Baliga
,
V. L.
,
Lin
,
X. H.
,
Chan
,
W. G.
, and
Hajaligol
,
M. R.
,
2004
, “
Characterization of Chars From Pyrolysis of Lignin
,”
Fuel
,
83
(
11–12
), pp.
1469
1482
.
30.
Varma
,
A. K.
, and
Mondal
,
P.
,
2016
, “
Physicochemical Characterization and Pyrolysis Kinetic Study of Sugarcane Bagasse Using Thermogravimetric Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052205
.
31.
Ranzi
,
E.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Frassoldati
,
A.
,
Migliavacca
,
G.
,
Pierucci
,
S.
, and
Sommariva
,
S.
,
2008
, “
Chemical Kinetics of Biomass Pyrolysis
,”
Energy Fuels
,
22
(
6
), pp.
4292
4300
.
32.
Bilba
,
K.
, and
Ouensanga
,
A.
,
1996
, “
Fourier Transform Infrared Spectroscopic Study of Thermal Degradation of Sugar Cane Bagasse
,”
J. Anal. Appl. Pyrolysis
,
38
(
1–2
), pp.
61
73
.
33.
Guerrero
,
M.
,
Ruiz
,
M. P.
,
Millera
,
Á.
,
Alzueta
,
M. U.
, and
Bilbao
,
R.
,
2008
, “
Characterization of Biomass Chars Formed Under Different Devolatilization Conditions: Differences Between Rice Husk and Eucalyptus
,”
Energy Fuels
,
22
(
2
), pp.
1275
1284
.
34.
Keown
,
D. M.
,
Li
,
X. J.
,
Hayashi
,
J. I.
, and
Li
,
C. Z.
,
2007
, “
Characterization of the Structural Features of Char From the Pyrolysis of Cane Trash Using Fourier Transform−Raman Spectroscopy
,”
Energy Fuels
,
21
(
3
), pp.
1816
1821
.
35.
Yamauchi
,
S.
, and
Kurimoto
,
Y.
,
2003
, “
Raman Spectroscopic Study on Pyrolyzed Wood and Bark of Japanese Cedar: Temperature Dependence of Raman Parameters
,”
J. Wood Sci.
,
49
(
3
), pp.
235
240
.
36.
Sheng
,
C. D.
,
2007
, “
Char Structure Characterised by Raman Spectroscopy and Its Correlations With Combustion Reactivity
,”
Fuel
,
86
(
15
), pp.
2316
2324
.
37.
Li
,
X. J.
,
Hayashi
,
J. I.
, and
Li
,
C. Z.
,
2006
, “
FT-Raman Spectroscopic Study of the Evolution of Char Structure During the Pyrolysis of a Victorian Brown Coal
,”
Fuel
,
85
(
12–13
), pp.
1700
1707
.
38.
Sadezky
,
A.
,
Muckenhuber
,
H.
,
Grothe
,
H.
,
Niessner
,
R.
, and
Pöschl
,
U.
,
2005
, “
Raman Microspectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis and Structural Information
,”
Carbon
,
43
(
8
), pp.
1731
1742
.
39.
Kim
,
P.
,
Johnson
,
A.
,
Edmunds
,
C. W.
,
Radosevich
,
M.
,
Vogt
,
F.
,
Rials
,
T. G.
, and
Labbé
,
N.
,
2011
, “
Surface Functionality and Carbon Structures in Lignocellulosic-Derived Biochars Produced by Fast Pyrolysis
,”
Energy Fuels
,
25
(
10
), pp.
4693
4703
.
40.
Morga
,
R.
,
2011
, “
Micro-Raman Spectroscopy of Carbonized Semifusinite and Fusinite
,”
Int. J. Coal Geol.
,
87
(
3–4
), pp.
253
267
.
41.
McDonald-Wharry
,
J.
,
Manley-Harris
,
M.
, and
Pickering
,
K.
,
2013
, “
Carbonisation of Biomass-Derived Chars and the Thermal Reduction of a Graphene Oxide Sample Studied Using Raman Spectroscopy
,”
Carbon
,
59
, pp.
383
405
.
42.
Rhim
,
Y. R.
,
Zhang
,
D. J.
,
Fairbrother
,
D. H.
,
Wepasnick
,
K. A.
,
Livi
,
K. J.
,
Bodnar
,
R. J.
, and
Nagle
,
D. C.
,
2010
, “
Changes in Electrical and Microstructural Properties of Microcrystalline Cellulose as Function of Carbonization Temperature
,”
Carbon
,
48
(
4
), pp.
1012
1024
.
43.
Chabalala
,
V. P.
,
Wagner
,
N.
, and
Potgieter-Vermaak
,
S.
,
2011
, “
Investigation Into the Evolution of Char Structure Using Raman Spectroscopy in Conjunction With Coal Petrography—Part 1
,”
Fuel Process. Technol.
,
92
(
4
), pp.
750
756
.
44.
McCreery
,
R. L.
,
2005
,
Raman Spectroscopy for Chemical Analysis
,
Wiley
,
Hoboken, NJ
.
45.
Gani
,
A.
, and
Naruse
,
I.
,
2007
, “
Effect of Cellulose and Lignin Content on Pyrolysis and Combustion Characteristics for Several Types of Biomass
,”
Renewable Energy
,
32
(
4
), pp.
649
661
.
46.
Álvarez
,
A.
,
Pizarro
,
C.
,
García
,
R.
,
Bueno
,
J. L.
, and
Lavín
,
A. G.
,
2016
, “
Determination of Kinetic Parameters for Biomass Combustion
,”
Bioresour. Technol.
,
216
, pp.
36
43
.
47.
Pickard
,
S.
,
Daood
,
S. S.
,
Pourkashanian
,
M.
, and
Nimmo
,
W.
,
2014
, “
Reactivity During Bench-Scale Combustion of Biomass Fuels for Carbon Capture and Storage Applications
,”
Fuel
,
134
, pp.
171
179
.
48.
Abdullah
,
H.
,
Mediaswanti
,
K. A.
, and
Wu
,
H. W.
,
2010
, “
Biochar as a Fuel: 2. Significant Differences in Fuel Quality and Ash Properties of Biochars From Various Biomass Components of Mallee Trees
,”
Energy Fuels
,
24
(
3
), pp.
1972
1979
.
49.
Jiang
,
X. M.
,
Zheng
,
C. G.
,
Qiu
,
J. R.
,
Li
,
J. B.
, and
Liu
,
D. C.
,
2001
, “
Combustion Characteristics of Super Fine Pulverized Coal Particles
,”
Energy Fuels
,
15
(
5
), pp.
1100
1102
.
50.
Zhang
,
L.
,
Zhang
,
B.
,
Yang
,
Z. Q.
, and
Yan
,
Y. F.
,
2014
, “
Pyrolysis Behavior of Biomass With Different Ca-Based Additives
,”
RSC Adv.
,
4
(
74
), pp.
39145
39155
.
51.
Yan
,
Y. F.
,
Feng
,
S.
,
Zhang
,
L.
,
Li
,
L. X.
,
Zhang
,
L.
, and
Yang
,
Z. Q.
,
2017
, “
Experimental Research on Catalytic Combustion Characteristics of Inferior Coal and Sludge Mixture
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032201
.
52.
Zhou
,
L. M.
,
Wang
,
Y. P.
,
Huang
,
Q. W.
, and
Cai
,
J. Q.
,
2006
, “
Thermogravimetric Characteristics and Kinetic of Plastic and Biomass Blends Co-Pyrolysis
,”
Fuel Process. Technol.
,
87
(
11
), pp.
963
969
.
53.
Zhang
,
S. Y.
,
Hong
,
R. Y.
,
Cao
,
J. P.
, and
Takarada
,
T.
,
2009
, “
Influence of Manure Types and Pyrolysis Conditions on the Oxidation Behavior of Manure Char
,”
Bioresour. Technol.
,
100
(
18
), pp.
4278
4283
.
You do not currently have access to this content.