The gas-to-liquid (GTL) fuel, a liquid fuel synthesized from natural gas through Fischer–Tropsch process, exhibits better combustion and, in turn, lower emission characteristics than the conventional jet fuels. However, the GTL fuel has different fuel properties than those of regular jet fuels, which could potentially affect its atomization and combustion aspects. The objective of the present work is to investigate the near-nozzle atomization characteristics of GTL fuel and compare them with those of the conventional Jet A-1 fuel. The spray experiments are conducted at different nozzle operating conditions under standard ambient conditions. The near-nozzle macroscopic spray characteristics are determined from the shadowgraph images. Near the nozzle exit, a thorough statistical analysis shows that the liquid sheet dynamics of GTL fuel is different from that of Jet A-1 fuel. However, further downstream, the microscopic spray characteristics of GTL fuel are comparable to those of the Jet A-1 fuel.

References

1.
Agarwal
,
R. K.
,
2011
, “Environmentally Responsible Air and Ground Transportation,”
AIAA
Paper No. 2011-965.
2.
Blakey
,
S.
,
Rye
,
L.
, and
Wilson
,
C. W.
,
2011
, “
Aviation Gas Turbine Alternative Fuels: A Review
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2863
2885
.
3.
Fyffe
,
D.
,
Moran
,
J.
,
Kumaran
,
K.
,
Sadr
,
R.
, and
Al-Sharshani
,
A.
,
2011
, “Effect of GTL-Like Jet Fuel Composition on GT Engine Altitude Ignition Performance—Part I: Combustor Operability,”
ASME
Paper No. GT2011-45487.
4.
Mosbach
,
T.
,
Gebel
,
G. C.
,
Le Clercq
,
P.
,
Sadr
,
R.
,
Kumaran
,
K.
, and
Al-Sharshani
,
A.
,
2011
, “Investigation of GTL-Like Jet Fuel Composition on GT Engine Altitude Ignition and Combustion Performance—Part II: Detailed Diagnostics,”
ASME
Paper No. GT2011-45510.
5.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012204
.
6.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2016
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022202
.
7.
Nash
,
L.
,
Klettlinger
,
J.
, and
Vasu
,
S.
,
2017
, “
Ellipsometric Measurements of the Thermal Stability of Alternative Fuels
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062207
.
8.
Pucher
,
G.
,
Allan
,
W.
,
LaViolette
,
M.
, and
Piotras
,
P.
,
2011
, “
Emission From a Gas Turbine Sector Rig Operated With Synthetic Aviation and Biodiesel Fuel
,”
ASME J. Eng. Gas Turbines Power
,
133
(
11
), p.
111502
.
9.
Brown
,
C. T.
,
Mondragon
,
U.
, and
McDonell
,
V.
,
2013
, “Behavior of Alternative Fuels Injected as a Liquid Jet Into a Crossflow,”
AIAA
Paper No. 2013-0161.
10.
Kumaran
,
K.
, and
Sadr
,
R.
,
2014
, “
Effect of Fuel Properties on Spray Characteristics of Alternative Jet Fuels Using Global Sizing Velocimetry
,”
Atomization Sprays
,
24
(
7
), pp.
575
597
.
11.
Kannaiyan, K., and Sadr, R., 2014, “
Experimental Investigation of Spray Characteristics of Alternative Aviation Fuels
,”
Energy Convers. Manage.
,
88
, pp. 1060–1069.
12.
Zhao
,
J.
,
Zhao
,
B.
,
Wang
,
X.
, and
Yang
,
X.
,
2017
, “
Atomization Performance and TG Analysis of Fischer-Tropsch Fuel Compared With RP-3 Aviation Fuel
,”
Int. J. Hydrogen Energy
,
42
(
29
), pp.
18626
18632
.
13.
Kumaran
,
K.
, and
Sadr
,
R.
,
2017
, “
The Effects of Alumina Nanoparticles as Fuel Additives on the Spray Characteristics of Gas-to-Liquid Jet Fuels
,”
Exp. Therm. Fluid Sci.
,
87
, pp.
93
103
.
14.
Keane
,
R. D.
, and
Adrian
,
R. J.
,
1992
, “
Theory of Cross-Correlation Analysis of PIV Images
,”
Appl. Sci. Res.
,
49
(
3
), pp.
191
215
.
15.
Davy
,
M. H.
, and
Loustalan
,
P. W.
,
2007
, “
On the Sheet Breakup of Direct-Injection Gasoline Pressure Swirl Atomizer Sprays
,”
Atomization Sprays
,
17
(
6
), pp.
501
528
.
16.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Santiago
,
J. G.
,
2000
, “
A PIV Algorithm for Estimating Time-Averaged Velocity Fields
,”
ASME J. Fluids Eng.
,
122
(
2
), pp.
285
289
.
17.
Yamine
,
A.
,
Kumaran
,
K.
, and
Sadr
,
R.
,
2015
, “
Spray Visualization of Alternative Aviation Turbine Fuel Embedded With Metallic Nanoparticles
,”
Tenth Pacific Symposium on Flow Visualization and Image Processing, Naples, Italy, June 15–18, Paper
No.
110
.
18.
Lefebvre
,
A. H.
,
1989
,
Atomization and Sprays
,
CRC Press
,
Boca Raton, FL
, pp.
67
68
.
19.
Dombrowski
,
N.
, and
Hooped
,
P. C.
,
1962
, “
The Effect of Ambient Density on Drop Formation in Sprays
,”
Chem. Eng. Sci. J.
,
17
(
4
), pp.
291
305
.
20.
Han
,
Z.
,
Xu
,
Z.
,
Wooldridge
,
S. T.
,
Yi
,
J.
, and
Lavoie
,
G.
,
2001
, “Modeling of DISI Engine Sprays With Comparison to Experimental In-Cylinder Spray Images,”
SAE
Paper No. 2001-01-3667.
You do not currently have access to this content.