Thermoelectric technology applied in vehicle has become significantly essential due to the global energy crisis and the environmental protection issues. A novelty energy efficient technology called localized air-conditioning (LAC) powered by thermoelectric generator (TEG), i.e., TEG-powered LAC, is proposed in order to better utilize the generated power of TEG, only then will the fuel economy improvement be achieved. This system which has little impact on the original automotive electrical system is basically comprised of LAC, TEG, converter, and battery. The TEG can directly convert thermal energy to electrical energy to power the novelty energy-efficient air-conditioning system called LAC. The submodels of LAC and TEG are built and integrated into a heavy-duty vehicle to quantitatively assess its performance by simulation analysis. The results indicate that the novelty TEG-powered LAC system can work normally with high efficiency and improve the fuel economy by 3.7%. Therefore, this system resolves the problem of proper use of the TEG's power and provides a fully new perspective to substitute the mechanical loads to engine with electrical loads powered by TEG to improve the fuel economy with much more practicality and rationality.

References

References
1.
Riffat
,
S. B.
, and
Ma
,
X.
,
2003
, “
Thermoelectrics: A Review of Present and Potential Applications
,”
Appl. Therm. Eng.
,
23
(
8
), pp.
913
935
.
2.
Saqr
,
K. M.
, and
Musa
,
M. N.
,
2009
, “
Critical Review of Thermoelectrics in Modern Power Generation Applications
,”
Therm. Sci.
,
13
(
3
), pp.
165
174
.
3.
Liu
,
X.
,
Deng
,
Y. D.
, and
Chen
,
S.
,
2014
, “
A Case Study on Compatibility of Automotive Exhaust Thermoelectric Generation System, Catalytic Converter and Muffler
,”
Case Stud. Therm. Eng.
,
2
, pp.
66
69
.
4.
Su
,
C. Q.
,
Wang
,
W. S.
,
Liu
,
X.
, and
Deng
,
Y. D.
,
2014
, “
Simulation and Experimental Study on Thermal Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators
,”
Case Stud. Therm. Eng.
,
4
(
C
), pp.
85
91
.
5.
Ikoma
,
K.
,
Munekiyo
,
M.
,
Furuya
,
K.
, and
Kobayashi
,
M.
,
1998
, “
Thermoelectric Module and Generator for Gasoline Engine Vehicles
,”
IEEE XVII International Conference on Thermoelectrics
(
ICT
), Nagoya, Japan, May 24–28, pp.
464
467
.
6.
Haidar
,
J. G.
, and
Ghojel
,
J. I.
,
2001
, “
Waste Heat Recovery From the Exhaust of Low-Power Diesel Engine Using Thermoelectric Generators
,”
XX International Conference on Thermoelectrics
(
ICT
2001), Beijing, China, June 8–11, pp.
413
418
.
7.
Liu
,
X.
,
Li
,
C.
,
Deng
,
Y. D.
, and
Su
,
C. Q.
,
2015
, “
An Energy-Harvesting System Using Thermoelectric Power Generation for Automotive Application,
,”
Int. J. Elec. Power Energy Syst.
,
67
, pp.
510
516
.
8.
Mansouri
,
N.
,
Timm
,
E.
,
Schock
,
H.
,
Sahoo
,
D.
, and
Kotrba
,
A.
,
2016
, “
Development of a Circular Thermoelectric Skutterudite Couple Using Compression Technology
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052003
.
9.
Stobart
,
R.
,
Wijewardane
,
M. A.
, and
Yang
,
Z.
,
2016
, “
Comprehensive Analysis of Thermoelectric Generation Systems for Automotive Applications
,”
Appl. Therm. Eng.
,
112
, pp.
1433
1444
.
10.
Liu
,
X.
,
Deng
,
Y. D.
,
Li
,
Z.
, and
Su
,
C. Q.
,
2015
, “
Performance Analysis of a Waste Heat Recovery Thermoelectric Generation System for Automotive Application
,”
Energy Convers. Manage.
,
90
, pp.
121
127
.
11.
Zhang
,
Y.
,
Cleary
,
M.
,
Wang
,
X.
,
Kempf
,
N.
,
Schoensee
,
L.
,
Yang
,
J.
,
Joshi
,
G.
, and
Meda
,
L.
,
2015
, “
High-Temperature and High-Power-Density Nanostructured Thermoelectric Generator for Automotive Waste Heat Recovery
,”
Energy Convers. Manage.
,
105
, pp.
946
950
.
12.
Nicholas
,
Y.
,
Kempf
,
N.
, and
Zhang
,
Y.
,
2016
, “
Design and Optimization of Automotive Thermoelectric Generators for Maximum Fuel Efficiency Improvement
,”
Energy Convers. Manage.
,
121
, pp.
224
231
.
13.
Yu
,
S.
,
Du
,
Q.
,
Diao
,
H.
,
Shu
,
G.
, and
Jiao
,
K.
,
2015
, “
Effect of Vehicle Driving Conditions on the Performance of Thermoelectric Generator
,”
Energy Convers. Manage.
,
96
, pp.
363
376
.
14.
Deng
,
Y. D.
,
Fan
,
W.
,
Ling
,
K.
, and
Su
,
C. Q.
,
2012
, “
A 42-V Electrical and Hybrid Driving System Based on a Vehicular Waste-Heat Thermoelectric Generator
,”
J. Electron. Mater.
,
41
(
6
), pp.
1698
1705
.
15.
Deng
,
Y. D.
,
Fan
,
W.
,
Tang
,
Z. B.
,
Chang
,
X. Y.
,
Ling
,
K.
, and
Su
,
C. Q.
,
2013
, “
Control Strategy for a 42-V Waste-Heat Thermoelectric Vehicle
,”
J. Electron. Mater.
,
42
(
7
), pp.
1522
1528
.
16.
Schock
,
H.
,
Brereton
,
G.
,
Case
,
E.
,
D'Angelo
,
J.
,
Hogan
,
T.
,
Lyle
,
M.
,
Maloney
,
R.
,
Moran
,
K.
,
Novak
,
J.
,
Nelson
,
C.
,
Panayi
,
A.
,
Ruckle
,
T.
,
Sakamoto
,
J.
,
Shih
,
T.
,
Timm
,
E.
,
Zhang
,
L.
, and
Zhu
,
G.
,
2013
, “
Prospects for Implementation of Thermoelectric Generators as Waste Heat Recovery Systems in Class 8 Truck Applications
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
022001
.
17.
Crane
,
D. T.
, and
Bell
,
L. E.
,
2007
, “
Design to Maximize Performance of a Thermoelectric Power Generator With a Dynamic Thermal Power Source
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), pp.
361
369
.
18.
Jacobs
,
T. J.
,
2015
, “
Waste Heat Recovery Potential of Advanced Internal Combustion Engine Technologies
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042004
.
19.
Tian
,
H.
,
Sun
,
X.
,
Jia
,
Q.
,
Liang
,
X.
,
Shu
,
G.
, and
Wang
,
X.
,
2015
, “
Comparison and Parameter Optimization of a Segmented Thermoelectric Generator by Using the High Temperature Exhaust of a Diesel Engine
,”
Energy
,
84
(
5
), pp.
121
130
.
20.
Hendricks
,
T. J.
, and
Terry
,
J.
,
2007
, “
Thermal System Interactions in Optimizing Advanced Thermoelectric Energy Recovery Systems
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
223
231
.
21.
Vale
,
S.
,
Heber
,
L.
,
Coelho
,
P. J.
, and
Silva
,
C. M.
,
2017
, “
Parametric Study of a Thermoelectric Generator System for Exhaust Gas Energy Recovery in Diesel Road Freight Transportation
,”
Energy Convers. Manage.
,
133
(1), pp.
167
177
.
22.
Deng
,
Y. D.
,
Hu
,
T.
,
Su
,
C. Q.
, and
Yuan
,
X. H.
,
2016
, “
Fuel Economy Improvement by Utilizing Thermoelectric Generator in Heavy-Duty Vehicle
,”
J. Electron. Mater.
,
46
(
5
), pp.
3227
3234
.
23.
Alahmer
,
A.
,
Mayyas
,
A.
,
Mayyas
,
A. A.
,
Alahmer
,
A.
,
Mayyas
,
A.
,
Mayyas
,
A. A.
,
Omar
,
M. A.
, and
Shan
,
D.
,
2011
, “
Vehicular Thermal Comfort Models: A Comprehensive Review
,”
Appl. Therm. Eng.
,
31
(
6–7
), pp.
995
1002
.
24.
Croitoru
,
C.
,
Nastase
,
I.
,
Bode
,
F.
,
Meslem
,
A.
, and
Dogeanu
,
A.
,
2015
, “
Thermal Comfort Models for Indoor Spaces and Vehicles—Current Capabilities and Future Perspectives
,”
Renewable Sustainable Energy Rev.
,
44
(
44
), pp.
304
318
.
25.
Wei
,
X.
,
Kusiak
,
A.
,
Li
,
M.
,
Tang
,
F.
, and
Zeng
,
Y.
,
2015
, “
Multi-Objective Optimization of the HVAC (Heating, Ventilation, and Air Conditioning) System Performance
,”
Energy
,
83
(
Suppl. 1–4
), pp.
294
306
.
26.
Oh
,
M. S.
,
Ahn
,
J. H.
,
Dong
,
W. K.
,
Dong
,
S. J.
, and
Kim
,
Y.
,
2014
, “
Thermal Comfort and Energy Saving in a Vehicle Compartment Using a Localized Air-Conditioning System
,”
Appl. Energy
,
133
(
6
), pp.
14
21
.
27.
Chen
,
K. H.
,
2015
, “
Energy Efficiency Impact of Localized Cooling/Heating for Electric Vehicle
,”
SAE
Paper No. 2015-01-0352.
28.
Kaushik
,
S.
,
Chen
,
K. H.
,
Han
,
T.
, and
Khalighi
,
B.
,
2011
, “
Micro-Cooling/Heating Strategy for Energy Efficient HVAC System
,”
J. Clin. Endocrinol. Metab.
,
4
(
1
), pp.
853
863
.
29.
Cheng
,
F.
,
Hong
,
Y.
, and
Chao
,
Z.
,
2014
, “
A Physical Model for Thermoelectric Generators With and Without Thomson Heat
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011201
.
30.
Liu
,
X.
,
Deng
,
Y. D.
,
Wang
,
W. S.
, and
Su
,
C. Q.
,
2015
, “
Experimental Investigation of Exhaust Thermoelectric System and Application for Vehicle
,”
J. Electron. Mater.
,
44
(
6
), pp.
2203
2210
.
31.
Deng
,
Y. D.
,
Zhang
,
Y.
, and
Su
,
C. Q.
,
2014
, “
Modular Analysis of Automobile Exhaust Thermoelectric Power Generation System
,”
J. Electron. Mater.
,
44
(
6
), pp.
1491
1497
.
32.
Deng
,
Y.
,
Liu
,
C.
, and
Chu
,
P.
,
2016
, “
Research on Integration of Automotive Exhaust-Based Thermoelectric Generator With Front Muffler
,”
SAE
Paper No. 2016-01-0203.
33.
Deng
,
Y. D.
,
Chen
,
Y. L.
,
Chen
,
S.
,
Xianyu
,
W. D.
, and
Su
,
C. Q.
,
2015
, “
Research on Integration of an Automotive Exhaust-Based Thermoelectric Generator and a Three-Way Catalytic Converter
,”
J. Electron. Mater.
,
44
(
6
), pp.
1524
1530
.
34.
Yuan
,
X.
,
Bai
,
W.
,
Deng
,
Y.
,
Su
,
C.
,
Liu
,
X.
,
Liu
,
C.
,
Gu
,
B.
, and
Wang
,
Y.
,
2016
, “
Numerical Investigation on the Performance of an Automotive Thermoelectric Generator Integrated With a Three-Way Catalytic Converter
,”
J. Renewable Sustainable Energy
,
8
(
4
), p.
044704
.
35.
Nan
,
J.
,
Wang
,
Y.
,
Chai
,
Z.
, and
Huang
,
J. K.
,
2012
, “
Modeling of Electric Vehicle Air Conditioning System and Analysis of Energy Consumption
,”
Adv. Mater. Res.
,
516–517
, pp.
1164
1170
.
36.
Nan
,
J.
, and
Zhou
,
Z. C.
,
2013
, “
Control Algorithm Optimization of Electric Air Conditioning Based on ADVISOR
,”
Adv. Mater. Res.
,
756–759
, pp.
3611
3616
.
37.
Ghosh
,
D.
,
Wang
,
M.
,
Wolfe
,
E.
,
Chen
,
K. H.
,
Kaushik
,
S.
, and
Han
,
T.
,
2012
, “
Energy Efficient HVAC System With Spot Cooling in an Automobile—Design and CFD Analysis
,”
SAE Int. J. Passenger Cars Mech. Syst.
,
5
(
2
), pp.
885
903
.
38.
Bastani
,
P.
,
Heywood
,
J. B.
, and
Hope
,
C.
,
2011
, “
Fuel Use and CO2 Emissions Under Uncertainty From Light-Duty Vehicles in the U.S. to 2050
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), pp.
1769
1779
.
You do not currently have access to this content.