Hydrogen production via carbonaceous catalytic methane decomposition is a complex process with simultaneous reaction, catalyst deactivation, and carbon agglomeration. Conventional reaction and deactivation models do not predict the progress of reaction accurately. Thus, statistical modeling using the method of design of experiments (DoEs) was used to design, model, and analyze experiments of methane decomposition to determine the important factors that affect the rates of reaction and deactivation. A variety of statistical models were tested in order to identify the best one agreeing with the experimental data by analysis of variance (ANOVA). Statistical regression models for initial reaction rate, catalyst activity, deactivation rate, and carbon weight gain were developed. The results showed that a quadratic model predicted the experimental findings. The main factors affecting the dynamics of the methane decomposition reaction and the catalyst deactivation rates for this process are partial pressure of methane, reaction temperature, catalytic activity, and residence time.

References

References
1.
Sanusii
,
Y. S.
,
Habib
,
M. A.
, and
Mokheimer
,
E. M. A.
,
2014
, “
Experimental Study on the Effect of Hydrogen Enrichment of Methane on the Stability and Emission of Nonpremixed Swirl Stabilized Combustor
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032203
.
2.
Al-Raqom
,
F.
, and
Klausner
,
J. F.
,
2013
, “
Reactivity of Iron/Zirconia Powder in Fluidized Bed Thermochemical Hydrogen Production Reactors
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012201
.
3.
Rice
,
W.
,
2003
, “
Proposed System for Hydrogen Production From Methane Hydrate With Sequestering of Carbon Dioxide Hydrate
,”
ASME J. Energy Resour. Technol.
,
125
(
4
), pp.
253
257
.
4.
Liu
,
Q.
, and
Jin
,
H.
,
2009
, “
Solar Hydrogen Production Integrating Low-Grade Solar Thermal Energy and Methanol Steam Reforming
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
012601
.
5.
Mokheimer
,
E. M. A.
,
Hussain
,
M. I.
,
Ahmed
,
S.
,
Habob
,
M. A.
, and
Al-Qutub
,
A. A.
,
2014
, “
On the Modelling of Steam Methane Reforming
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012001
.
6.
Ozalp
,
N.
,
Kogan
,
A.
, and
Epstein
,
M.
,
2009
, “
Solar Decomposition of Fossil Fuels as an Option for Sustainability
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
710
720
.
7.
Frusteri
,
F.
,
Italiano
,
G.
,
Espro
,
C.
,
Cannnila
,
C.
, and
Bonura
,
G.
,
2012
, “
H2 Production by Methane Decomposition: Catalytic and Technological Aspects
,”
Int. J. Hydrogen Energy
,
37
(
21
), pp.
16367
16374
.
8.
Muradov
,
N.
,
Smith
,
A.
, and
T-Raissi
,
A.
,
2005
, “
Catalytic Activity of Carbons for Methane Decomposition Reaction
,”
Catal. Today
,
102–103
, pp.
225
233
.
9.
Ozalp
,
N.
, and
Shilapuram
,
V.
,
2011
, “
Characterization of Activated Carbon for Carbon Laden Flows in a Solar Reactor
,”
ASME
Paper No. AJTEC2011-44381.
10.
Shilapuram
,
V.
, and
Ozalp
,
N.
,
2011
, “Carbon Catalyzed Methane Decomposition for Enhanced Solar Thermal Cracking,”
ASME
Paper No. ES2011-54644.
11.
Shilapuram
,
V.
,
Ozalp
,
N.
,
Oschatz
,
M.
,
Borchardt
,
L.
,
Kaskel
,
S.
, and
Lachance
,
R.
,
2014
, “
Thermogravimetric Analysis of Activated Carbons, Ordered Mesoporous Carbide-Derived Carbons, and Their Deactivation Kinetics of Catalytic Methane Decomposition
,”
Ind. Eng. Chem. Res.
,
53
(
5
), pp.
1741
1753
.
12.
Shilapuram
,
V.
,
Ozalp
,
N.
,
Oschatz
,
M.
,
Borchardt
,
L.
, and
Kaskel
,
S.
,
2014
, “
Hydrogen Production From Catalytic Decomposition of Methane Over Ordered Mesoporous Carbons (CMK-3) and Carbide-Derived Carbon (DUT-19)
,”
Carbon
,
67
, pp.
377
389
.
13.
Shilapuram
,
V.
, and
Ozalp
,
N.
,
2017
, “
Hydrogen Production by Carbon-Catalyzed Methane Decomposition Via Thermogravimetry
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012005
.
14.
Serrano
,
D. P.
,
Botas
,
J. A.
,
Pizarro
,
P.
, and
Gomez
,
G.
,
2013
, “
Kinetic and Autocatalytic Effects During the Hydrogen Production by Methane Decomposition Over Carbonaceous Catalysts
,”
Int. J. Hydrogen Energy
,
38
(
14
), pp.
5671
5683
.
15.
Abbas
,
H. F.
, and
Baker
,
I. F.
,
2011
, “
Thermocatalytic Decomposition of Methane Using Activated Carbon: Studying the Influence of Process Parameters Using Factorial Design
,”
Int. J. Hydrogen Energy
,
36
(
15
), pp.
8985
8993
.
16.
Al-Hassani
,
A. A.
,
Abbas
,
H. F.
, and
Daud
,
W. M. A. W.
,
2014
, “
Hydrogen Production Via Decomposition of Methane Over Activated Carbons as Catalysts: Full Factorial Design
,”
Int. J. Hydrogen Energy
,
39
(
13
), pp.
7004
7014
.
17.
Kim
,
M. H.
,
Lee
,
E. K.
,
Jun
,
J. H.
,
Kong
,
S. J.
,
Han
,
G. Y.
,
Lee
,
B. K.
,
Lee
,
T. J.
, and
Yoon
,
K. J.
,
2004
, “
Hydrogen Production by Catalytic Decomposition of Methane Over Activated Carbons: Kinetic Study
,”
Int. J. Hydrogen Energy
,
29
(
2
), pp.
187
193
.
18.
Lee
,
S. Y.
,
Ryu
,
B. H.
,
Han
,
G. Y.
,
Lee
,
T. J.
, and
Yoon
,
K. J.
,
2008
, “
Catalytic Characteristics of Specialty Carbon Blacks in Decomposition of Methane for Hydrogen Production
,”
Carbon
,
46
(
14
), pp.
1978
1986
.
19.
Bai
,
Z.
,
Chen
,
H.
,
Li
,
B.
, and
Li
,
W.
,
2005
, “
Catalytic Decomposition of Methane Over Activated Carbon
,”
J. Anal. Appl. Pyrolysis
,
73
(
2
), pp.
335
341
.
20.
Ashok
,
J.
,
Kumar
,
S. N.
,
Venugopal
,
A.
,
Durga Kumari
,
V.
,
Tripathi
,
S.
, and
Subrahmanyam
,
M.
,
2008
, “
COx Free Hydrogen by Methane Decomposition Over Activated Carbons
,”
Catal. Commun.
,
9
(
1
), pp.
164
169
.
21.
Pinilla
,
J. L.
,
Suelves
,
I.
,
Lazaro
,
M. J.
, and
Moliner
,
R.
,
2008
, “
Kinetic Study of the Thermal Decomposition of Methane Using Carbonaceous Catalysts
,”
Chem. Eng. J.
,
138
(
1–3
), pp.
301
306
.
22.
Abbas
,
H. F.
, and
Daud
,
W. M. A. W.
,
2010
, “
Hydrogen Production by Thermocatalytic Decomposition of Methane Using a Fixed Bed Activated Carbon in a Pilot Scale Unit: Apparent Kinetic, Deactivation and Diffusional Limitation Studies
,”
Int. J. Hydrogen Energy
,
35
(
22
), pp.
12268
12276
.
You do not currently have access to this content.