For the application of waste heat recovery (WHR), supercritical CO2 (S-CO2) Brayton power cycles offer significant suitable advantages such as compactness, low capital cost, and applicability to a broad range of heat source temperatures. The current study is focused on thermodynamic modeling and optimization of recuperated (RC) and recuperated recompression (RRC) configurations of S-CO2 Brayton cycles for exhaust heat recovery from a next generation heavy duty simple cycle gas turbine using genetic algorithm (GA). This nongradient based algorithm yields a simultaneous optimization of key S-CO2 Brayton cycle decision variables such as turbine inlet temperature, pinch point temperature difference, compressor pressure ratio, and mass flow rate of CO2. The main goal of the optimization is to maximize power out of the exhaust stream which makes it single objective optimization. The optimization is based on thermodynamic analysis with suitable practical assumptions which can be varied according to the need of user. The optimal cycle design points are presented for both RC and RRC configurations and comparison of net power output is established for WHR. For the chosen exhaust gas mass flow rate, RRC cycle yields more power output than RC cycle. The main conclusion drawn from the current study is that the choice of best cycle for WHR actually depends heavily on mass flow rate of the exhaust gas. Further, the economic analysis of the more power producing RRC cycle is performed and cost comparison between the optimized RRC cycle and steam Rankine bottoming cycle is presented.

References

References
1.
EIA
,
2016
, “
International Energy Outlook 2016
,” U.S. Energy Information Administration, Washington, DC, accessed Mar. 8, 2018, https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf
2.
Franco
,
A.
, and
Vazquez
,
A.
,
2006
, “
A Thermodynamic Based Approach for the Multicriteria Assessment of Energy Conversion Systems
,”
ASME J. Energy Resour. Technol.
,
128
(
4
), pp.
346
351
.
3.
Crane
,
D.
, and
Bell
,
L.
,
2009
, “
Design to Maximize Performance of a Thermoelectric Power Generator With a Dynamic Thermal Power Source
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
012401
.
4.
Ozalp
,
N.
,
2009
, “
Utilization of Heat, Power, and Recovered Waste Heat for Industrial Processes in the U.S. Chemical Industry
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
022401
.
5.
Srinivas
,
T.
, and
Reddy
,
B. V.
,
2014
, “
Thermal Optimization of a Solar Thermal Cooling Cogeneration Plant at Low Temperature Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
1–10
), p.
021204
.
6.
Boretti
,
A.
,
2012
, “
Energy Recovery in Passenger Cars
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022203
.
7.
Jacobs
,
T.
,
2015
, “
Waste Heat Recovery Potential of Advanced Internal Combustion Engine Technologies
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042004
.
8.
Schock
,
H.
,
Brereton
,
G.
,
Case
,
E.
,
D'Angelo
,
J.
,
Hogan
,
T.
,
Lyle
,
M.
,
Maloney
,
R.
,
Moran
,
K.
,
Novak
,
J.
,
Nelson
,
C.
,
Panayi
,
A.
,
Ruckle
,
T.
,
Sakamoto
,
J.
,
Shih
,
T.
,
Timm
,
E.
,
Zhang
,
L.
, and
Zhu
,
G.
,
2013
, “
Prospects for Implementation of Thermoelectric Generators as Waste Heat Recovery Systems in Class 8 Truck Applications
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
022001
.
9.
Hendricks
,
T.
,
2007
, “
Thermal System Interactions in Optimizing Advanced Thermoelectric Energy Recovery Systems
,”
ASME J. Energy Resour. Technol.
,
129
(3), pp.
223
231
.
10.
Lin
,
W.
,
Huang
,
M.
,
He
,
H.
, and
Gu
,
A.
,
2009
, “
A Transcritical CO2 Rankine Cycle With LNG Cold Energy Utilization and Liquefaction of CO2 in Gas Turbine Exhaust
,”
ASME J. Energy Resour. Technol.
,
131
(
1–5
), p.
042201
.
11.
Feher
,
E. G.
,
1968
, “
The Supercritical Thermodynamic Power Cycle
,”
Energy Convers.
,
8
(
2
), pp.
85
90
.
12.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
ASME J. Eng. Power
, 90(3), pp.
287
295
.
13.
Persichilli
,
M.
,
Kacludis
,
A.
,
Zdankiewicz
,
E.
, and
Held
,
T.
,
2012
, “
Supercritical CO2 Power Cycle Developments and Commercialization: Why s-CO2 Can Displace Steam
,”
Power-Gen India & Central Asia
, New Delhi, India, Apr. 19–21.https://www.echogen.com/documents/why-sco2-can-displace-steam.pdf
14.
Persichilli
,
M.
,
Held
,
T.
,
Hostler
,
S.
,
Zdankiewicz
,
E.
, and
Klapp
,
D.
,
2011
, “
Transforming Waste Heat to Power Through Development of a CO2—Based Power Cycle
,”
Electric Power Expo
, Rosemount, IL, May 10–12.https://www.echogen.com/documents/transforming-waste-heat-to-power-illinois.pdf
15.
Mahmood
,
M. M.
, and
Kapat
,
J.
,
2014
, “
Thermodynamic Optimization of Recuperated S-CO2 Brayton Cycles for Waste Heat Recovery Applications
,” Fourth International Symposium—Supercritical CO2 Power Cycles, Pittsburgh, PA, Sept. 9–10.
16.
MathWorks
,
2014
, “
MATLAB and Statistics Toolbox, Ver. R2014a
,” The MathWorks, Inc., Natick, MA.
17.
Red Cedar Technology,
2014
, “
Heeds MDO, 2014.11
,” Red Cedar Technology, East Lansing, MI.
18.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “
NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties—REFPROP Version 9.11
,” National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD.
19.
Keith
,
W.
, 2018, “
Linking REFPROP With Other Applications: 8. MATLAB Applications
,” GE Home Business Solutions, Boston, MA, accessed Mar. 3, 2018, http://trc.nist.gov/refprop/LINKING/Linking.htm
20.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbone Dioxide Covering Temperature to 110 K at Pressure Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.
21.
Angelino
,
G.
,
1967
, “
Perspectives for the Liquid Phase Compression Gas Turbine
,”
ASME J. Eng. Power
,
89
(
2
), pp.
229
237
.
22.
Turchi
,
C. S.
,
Ma
,
Z.
, and
Dyreby
,
J.
,
2012
, “
Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems
,”
ASME
Paper No. GT2012-68932.
23.
Kulhánek
,
M.
, and
Dostál
,
V.
,
2011
, “
Thermodynamic Analysis and Comparison of Supercritical Carbon Dioxide Cycles
,”
Supercritical CO2 Power Cycle Symposium
, Boulder, CO, May 24–25.http://www.sco2powercyclesymposium.org/resource_center/system_concepts/thermodynamic-analysis-and-comparison-of-supercritical-carbon-dioxide-cycles
24.
Heatric, 2017, “
Typical Characteristics of Diffusion-Bonded Heat Exchangers
,” Heatric, Poole, UK, accessed June 2, 2017, http://www.heatric.com/typical_characteristics_of_PCHEs.html
25.
Kapoor
,
M.
,
Dogan
,
O.
,
Rozman
,
K.
,
Hawk
,
J.
,
Wilson
,
A.
,
L'Estrange
,
T.
, and
Narayanan
,
V.
,
2016
, “
Diffusion Bonding of H230 Ni-Superalloy for Application in Microchannel Heat Exchangers
,”
Fifth International Symposium—Supercritical CO2 Power Cycles
, San Antonio, TX, Mar. 28–31.https://www.researchgate.net/publication/304211869_Diffusion_bonding_of_H230_Ni-superalloy_for_application_in_microchannel_heat_exchangers
26.
ASME, 2017, “
Eddystone Station Unit #1
,” Landmark #226, ASME Landmark Program, American Society of Mechanical Engineers, New York, accessed June 2, 2017, https://www.asme.org/about-asme/who-we-are/engineering-history/landmarks/226-eddystone-station-unit-1
27.
Vesely
,
L.
,
Dostal
,
V.
,
Bartos
,
O.
, and
Novotny
,
V.
,
2016
, “
Pinch Point Analysis of Heat Exchangers for Supercritical Carbon Dioxide With Gaseous Admixtures in CCS Systems
,”
Energy Proc.
,
86
, pp.
489
499
.
28.
Siemens AG, 2018, “
SGT6-8000H Heavy-Duty Gas Turbine (60 Hz)
,” Siemens AG, Munich, Germany, accessed June 2, 2017, https://www.siemens.com/global/en/home/products/energy/power-generation/gas-turbines/sgt6-8000h.html#!/
29.
Mitchell
,
M.
,
1996
,
An Introduction to Genetic Algorithms
,
MIT Press
,
Cambridge, MA
.
30.
Wang
,
L.
,
Yang
,
Y.
,
Dong
,
C.
,
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2014
, “
Systematic Optimization of the Design of Steam Cycles Using MINLP and Differential Evolution
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031601
.
31.
Demirkaya
,
G.
,
Besarati
,
S.
,
Padilla
,
R.
,
Archibold
,
A.
,
Goswami
,
D.
,
Rahman
,
M.
, and
Stefanakos
,
E.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
(
1–8
), p.
032002
.
32.
El-Emam
,
R.
, and
Dincer
,
I.
,
2016
, “
Assessment and Evolutionary Based Multi-Objective Optimization of a Novel Renewable-Based Polygeneration Energy System
,”
ASME J. Energy Resour. Technol.
,
139
(
1–13
), p.
012003
.
33.
Khaliq
,
A.
,
Kumar
,
R.
, and
Dincer
,
I.
,
2009
, “
Exergy Analysis of an Industrial Waste Heat Recovery Based Cogeneration Cycle for Combined Production of Power and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
022402
.
34.
Mahmood
,
M. M.
,
Zawati
,
H.
,
Gou
,
J.
,
Xu
,
C.
, and
Kapat
,
J.
,
2016
, “
Use of 1-D Finite Enthalpy Method for a High-Temperature Recuperator Made of Polymer Derived Ceramic Composite for a Supercritical Carbon Dioxide Power System
,”
Fifth International Symposium—Supercritical CO2 Power Cycles
, San Antonio, TX, Mar. 28–31.http://sco2symposium.com/www2/sco2/papers2016/HeatExchanger/134pres.pdf
35.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” Massachusetts Institute of Technology, Center for Advanced Nuclear Energy Systems, Advanced Nuclear Power Program, Cambridge, MA, Paper No.
MIT-ANP-TR-100
.https://dspace.mit.edu/handle/1721.1/17746
36.
Wright
,
S.
,
Davidson
,
C.
, and
Scammell
,
W.
,
2016
, “
Thermo-Economic Analysis of Four sCO2 Waste Heat Recovery Power Systems
,”
Fifth International SCO2 Symposium
, San Antonio, TX, Mar. 28–31.http://www.sco2symposium.com/www2/sco2/papers2016/SystemModeling/059paper.pdf
37.
Elson
,
A.
,
Tidball
,
R.
, and
Hampson
,
A.
,
2014
, “
Waste Heat to Power Market Assessment
,” Energy and Transportation Science Division, ICF International, Fairfax, VA, Report No.
ORNL/TM-2014/620
.https://info.ornl.gov/sites/publications/files/Pub52953.pdf
You do not currently have access to this content.