This study deals with thermodynamic analyses of an integrated wind thermal energy storage (WTES) system. The thermodynamic analyses of the proposed system are performed through energy and exergy approaches, and the energy and exergy efficiencies of the components in the system and overall system are determined and assessed. The magnitudes of irreversibilities are determined, and the impacts of different parameters on the performance of the system are identified. The overall energy and exergy efficiencies of the proposed system and its subsystems are computed as well. The energy and exergy efficiencies of the overall system are defined and obtained as 7.0% and 8.6%, respectively. WTES plants with combined molten salt energy storage application can run continuously, and can provide electrical power for both on-grid and off-grid systems. By converting the wind power into a permanent energy source, the WTES offers a practical solution that can meet the electrical demand of the regions where the climate conditions are feasible for consistent, environmentally benign and cost-effective electric power, and it can be considered as a potential energy solution.

References

References
1.
Kuravi
,
S.
,
Trahan
,
J.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. K.
,
2013
, “
Thermal Energy Storage Technologies and Systems for Concentrating Solar Power Plants
,”
Prog. Energy Combust. Sci.
,
39
(4), pp.
285
319
.
2.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2013
, “
A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications
,”
Appl. Energy
,
104
, pp.
538
553
.
3.
Garrison
,
J. B.
, and
Webber
,
M. E.
,
2011
, “
An Integrated Energy Storage Scheme for a Dispatchable Solar and Wind Powered Energy System
,”
J. Renewable Sustainable Energy
,
3
(4), p. 043101.
4.
Guizzi
,
G. L.
,
Manno
,
M.
,
Tolomei
,
L. M.
, and
Vitali
,
R. M.
,
2015
, “
Thermodynamic Analysis of a Liquid Air Energy Storage System
,”
Energy
,
93
(Pt. 2), pp.
1639
1647
.
5.
Antonelli
,
M.
,
Barsali
,
S.
,
Desideri
,
U.
,
Giglioli
,
R.
,
Paganucci
,
F.
, and
Pasini
,
G.
,
2017
, “
Liquid Air Energy Storage: Potential and Challenges of Hybrid Power Plants
,”
Appl. Energy
,
194
, pp.
522
529
.
6.
Coburn
,
A.
,
Walsh
,
E.
,
Solan
,
P. J.
, and
Mcdonnell
,
K. P.
,
2014
, “
Combining Wind and Pumped Hydro Energy Storage for Renewable Energy Generation in Ireland
,”
J. Wind Energy
,
2014
, p. 415898.
7.
Hedegaard
,
K.
, and
Meibom
,
P.
,
2012
, “
Wind Power Impacts and Electricity Storage—A Time Scale Perspective
,”
Renewable Energy
,
37
(1), pp.
318
324
.
8.
Slocum
,
A. H.
,
Codd
,
D. S.
,
Buongiorno
,
J.
,
Forsberg
,
C.
,
McKrell
,
T.
,
Nave
,
J. C.
,
Papanicolas, C. N.
,
Ghobeity, A.
,
Noone, C. J.
,
Passerini, S.
,
Rojas, F.
, and
Mitsos, A.
,
2011
, “
Concentrated Solar Power on Demand
,”
Sol. Energy
,
85
(7), pp.
1519
1529
.
9.
Barlev
,
D.
,
Vidu
,
R.
, and
Stroeve
,
P.
,
2011
, “
Innovation in Concentrated Solar Power
,”
Sol. Energy Mater. Sol. Cells
,
95
(10), pp.
2703
2725
.
10.
Osorio
,
J. D.
,
Rivera-Alvarez
,
A.
,
Swain
,
M.
, and
Ordonez
,
J. C.
,
2015
, “
Exergy Analysis of Discharging Multi-Tank Thermal Energy Storage Systems With Constant Heat Extraction
,”
Appl. Energy
,
154
, pp.
333
343
.
11.
Husband
,
W. W.
, and
Beyene
,
A.
,
2008
, “
Low-Grade Heat-Driven Rankine Cycle, a Feasibility Study
,”
Int. J. Energy Res.
,
32
(15), pp.
1373
1382
.
12.
Redha
,
A. M.
,
Dincer
,
I.
, and
Gadalla
,
M.
,
2011
, “
Thermodynamic Performance Assessment of Wind Energy Systems: An Application
,”
Energy
,
36
(7), pp.
4002
4010
.
13.
Yang
,
Z.
,
Wang
,
Z.
,
Ran
,
P.
,
Li
,
Z.
, and
Ni
,
W.
,
2014
, “
Thermodynamic Analysis of a Hybrid Thermal-Compressed Air Energy Storage System for the Integration of Wind Power
,”
Appl. Therm. Eng.
,
66
(1–2), pp.
519
527
.
14.
Suleman
,
F.
,
Dincer
,
I.
, and
Agelin-Chaab
,
M.
,
2014
, “
Development of an Integrated Renewable Energy System for Multigeneration
,”
Energy
,
78
, pp.
196
204
.
15.
Şahin
,
A. D.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2006
, “
Thermodynamic Analysis of Wind Energy
,”
Int. J. Energy Res.
,
30
(8), pp.
553
566
.
16.
Wen
,
H.
, and
Han
,
Y.
,
2017
, “
Study on Mobile Induction Heating Process of Internal Gear Rings for Wind Power Generation
,”
Appl. Therm. Eng.
,
112
, pp.
507
515
.
17.
Suárez
,
C.
,
Pino
,
F. J.
,
Rosa
,
F.
, and
Guerra
,
J.
,
2015
, “
Heat Loss From Thermal Energy Storage Ventilated Tank Foundations
,”
Sol. Energy
,
122
, pp.
783
794
.
18.
Herrmann
,
U.
,
Kelly
,
B.
, and
Price
,
H.
,
2004
, “
Two-Tank Molten Salt Storage for Parabolic Trough Solar Power Plants
,”
Energy
,
29
(5–6), pp.
883
893
.
19.
Wang
,
K.
, and
He
,
Y.-L.
,
2017
, “
Thermodynamic Analysis and Optimization of a Molten Salt Solar Power Tower Integrated With a Recompression Supercritical CO2 Brayton Cycle Based on Integrated Modeling
,”
Energy Convers. Manage.
,
135
, pp.
336
350
.
20.
Jwo
,
C. S.
,
Chien
,
Z. J.
,
Chen
,
Y. L.
, and
Chien
,
C. C.
,
2013
, “
Development of a Wind Directly Forced Heat Pump and Its Efficiency Analysis
,”
Int. J. Photoenergy
,
2013
, pp.
1
8
.
21.
Thess
,
A.
,
2013
, “
Thermodynamic Efficiency of Pumped Heat Electricity Storage
,”
Phys. Rev. Lett.
,
111
(11), p. 110602.
22.
Chakirov
,
R.
, and
Vagapov
,
Y.
,
2011
, “Direct Conversion of Wind Energy Into Heat Using Joule Machine,” Fourth International Conference on Environmental and Computer Science (
ICECS
2011), Singapore, Sept. 16–18, pp.
12
17
.http://www.ipcbee.com/vol19/3-ICECS2011R00007.pdf
23.
Tudorache
,
T.
, and
Melcescu
,
L.
,
2009
, “
FEM Optimal Design of Energy Efficient Induction Machines
,”
Adv. Elec. Comput. Eng.
,
9
(2), pp. 58–64.
24.
Sundararagavan
,
S.
, and
Baker
,
E.
,
2012
, “
Evaluating Energy Storage Technologies for Wind Power Integration
,”
Sol. Energy
,
86
(9), pp.
2707
2717
.
25.
Hughes
,
L.
,
2010
, “
The Technical Potential for Off-Peak Electricity to Serve as Backup in Wind-Electric Thermal Storage Systems
,”
Int. J. Green Energy
,
7
(2), pp.
181
193
.
26.
Okazaki
,
T.
,
Shirai
,
Y.
, and
Nakamura
,
T.
,
2015
, “
Concept Study of Wind Power Utilizing Direct Thermal Energy Conversion and Thermal Energy Storage
,”
Renewable Energy
,
83
, pp.
332
338
.
27.
Klein
,
S. A.
,
2016
, “Engineering Equation Solver, F-Chart Software, Version 10,” F-Chart Software, Madison, WI.
28.
Carballido
,
P. E. Z.
,
2009
, “Control of a Wind Turbine Equipped With a Variable Rotor Resistance,” Master's thesis, Chalmers University of Technology, Göteborg, Sweden.
29.
Dincer
,
I.
,
Midilli
,
A.
, and
Kucuk
,
H.
,
2014
,
Progress in Exergy, Energy, and the Environment
, Springer,
New York
.
30.
Khan
,
M. J.
, and
Iqbal
,
M. T.
,
2004
, “
Wind Energy Resource Map of Newfoundland
,”
Renewable Energy
,
29
(8), pp.
1211
1221
.
31.
EIA, 2017, “Today in Energy,” U.S. Energy Information Administration, Washington, DC, accessed Jan. 31, 2018, https://www.eia.gov/
32.
Luo
,
X.
,
Jihong
,
W.
,
Dooner
,
M.
, and
Clarke
,
J.
,
2015
, “
Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation
,”
Appl. Energy
,
137
, pp.
511
536
.
33.
Zakeri
,
B.
, and
Syri
,
S.
,
2015
, “
Electrical Energy Storage Systems: A Comparative Life Cycle Cost Analysis
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
569
596
.
You do not currently have access to this content.