Sewage sludge is a waste from the water treatment installations. It is used in agriculture. However, due to various environmental restrictions, not all of the sewage sludge can be utilized within that sector. Using this resource as a sustainable energy source might be an interesting alternative to the landfilling. Some of the fuel-related properties of sewage sludge make it difficult to be used as a fuel without preprocessing. Torrefaction is a promising pretreatment technique that could prove itself suitable to be used for improving sewage sludge. Additives might be used for obtaining some further improvements, either during the torrefaction stage or further at the final energy conversion stage (combustion, gasification, etc.). This paper presents the results of torrefaction experiments performed with sewage sludge from the local water treatment facility. Torrefaction was performed with laboratory-scale rotary reactor at three different temperatures (250 °C, 275 °C, and 300 °C). Cotorrefaction of sewage sludge with lignite was also performed. Torrefaction tests with quicklime (CaO) as an additive were also performed. Fuel-related properties of products of torrefaction and feedstock were determined. By-product of torrefaction, called torgas, was also a subject of the analysis. Propensity of the torrefied product to absorb moisture was assessed. Thermogravimetric analysis (TGA) of raw and torrefied samples was performed in order to compare the behavior of raw and torrefied materials during subsequent pyrolysis.

References

References
1.
Andersen
,
A.
,
2001
, “
Disposal and Recycling Routes for Sewage Sludge—Part 3: Scientific and Technical Report
,” European Communities, Luxembourg, UK,
Report
.
2.
Andersen
,
A.
,
2002
, “
Disposal and Recycling Routes for Sewage Sludge Part 4: Economic Report
,” European Communities, Luxembourg, UK,
Report
.
3.
Andersen
,
A.
,
2001
, “Disposal and Recycling Routes for Sewage Sludge—Part 1 –Sludge Use Acceptance Report,”
Office for Official Publications of the European Communities
, Luxembourg, UK,
Report
.
4.
Szruba
,
M.
,
2015
, “
Zagospodarowanie Osadów Ściekowych (En. Utilization of Sewage Sludge)
,”
Nowocz Bud Inżynieryjne
, pp.
54
59
.
5.
Inglezakis
,
V. J.
,
Zorpas
,
A. A.
,
Karagiannidis
,
A.
,
Samaras
,
P.
,
Voukkali
,
I.
, and
Sklari
,
S.
,
2014
, “
European Union Legislation on Sewage Sludge Management
,”
Fresenius Environ. Bull.
,
23
(2a), pp.
635
639
.
6.
Inglezakis
,
V.
,
Zorpas
,
A. A.
,
Karagiannidis
,
A.
,
Samaras
,
P.
, and
Voukkali
,
I.
,
2011
, “
European Union Legislation on Sewage Sludge Management
,”
Third International CEMEPE SECOTOX Conference
, Skiathos Island, Greece, June 19–24, pp.
475
480
.
7.
Moscicki
,
K. J.
,
Niedzwiecki
,
L.
,
Owczarek
,
P.
, and
Wnukowski
,
M.
,
2014
, “
Commoditization of Biomass: Dry Torrefaction and Pelletization—A Review
,”
J. Power Technol.
,
94
(4), pp.
233
249
.
8.
Nhuchhen
,
D.
,
Basu
,
P.
, and
Acharya
,
B.
,
2014
, “
A Comprehensive Review on Biomass Torrefaction
,”
Int. J. Renewable Energy Biofuels
,
2014
, pp.
1
56
.
9.
van der Stelt
,
M. J. C.
,
Gerhauser
,
H.
,
Kiel
,
J. H. A.
, and
Ptasinski
,
K. J.
,
2011
, “
Biomass Upgrading by Torrefaction for the Production of Biofuels: A Review
,”
Biomass Bioenergy
,
35
(9), pp.
3748
3762
.
10.
Zheng
,
A.
,
Zhao
,
Z.
,
Chang
,
S.
,
Huang
,
Z.
,
Zhao
,
K.
,
Wei
,
G.
,
He
,
F.
, and
Li
,
H.
,
2015
, “
Comparison of the Effect of Wet and Dry Torrefaction on Chemical Structure and Pyrolysis Behavior of Corncobs
,”
Bioresour. Technol.
,
176
, pp.
15
22
.
11.
Bach
,
Q. V.
, and
Tran
,
K. Q.
,
2015
, “
Dry and Wet Torrefaction of Woody Biomass—A Comparative Studyon Combustion Kinetics
,”
Energy Procedia
,
75
, pp.
150
155
.
12.
Wnukowski
,
M.
,
Owczarek
,
P.
, and
Niedźwiecki
,
Ł.
,
2015
, “
Wet Torrefaction of Miscanthus—Characterization of Hydrochars in View of Handling, Storage and Combustion Properties
,”
J. Ecol. Eng.
,
16
(
3
), pp.
161
167
.
13.
Acharya
,
B.
,
Dutta
,
A.
, and
Minaret
,
J.
,
2015
, “
Review on Comparative Study of Dry and Wet Torrefaction
,”
Sustainable Energy Technol. Assess.
,
12
, pp.
26
37
.
14.
Bridgwater
,
A. V.
,
2012
, “
Review of Fast Pyrolysis of Biomass and Product Upgrading
,”
Biomass Bioenergy
,
38
, pp.
68
94
.
15.
Louwes
,
A. C.
,
Basile
,
L.
,
Yukananto
,
R.
,
Bhagwandas
,
J. C.
,
Bramer
,
E. A.
, and
Brem
,
G.
,
2017
, “
Torrefied Biomass as Feed for Fast Pyrolysis: An Experimental Study and Chain Analysis
,”
Biomass Bioenergy
,
105
, pp.
116
126
.
16.
Boateng
,
A. A.
, and
Mullen
,
C. A.
,
2013
, “
Fast Pyrolysis of Biomass Thermally Pretreated by Torrefaction
,”
J. Anal. Appl. Pyrolysis
,
100
, pp.
95
102
.
17.
Meng
,
J.
,
Park
,
J.
,
Tilotta
,
D.
, and
Park
,
S.
,
2012
, “
The Effect of Torrefaction on the Chemistry of Fast-Pyrolysis Bio-Oil
,”
Bioresour. Technol.
,
111
, pp.
439
446
.
18.
Ren
,
S.
,
Lei
,
H.
,
Wang
,
L.
,
Bu
,
Q.
,
Chen
,
S.
,
Wu
,
J.
,
Julson
,
J.
,
Ruan
,
R.
,
Sun
,
L.
,
Zhang
,
X.
,
Chen
,
L.
,
Xie
,
X.
,
Yang
,
S.
,
Zhao
,
B.
, and
Si
,
H.
,
2013
, “
The Effects of Torrefaction on Compositions of Bio-Oil and Syngas From Biomass Pyrolysis by Microwave Heating
,”
Bioresour. Technol.
,
135
, pp.
659
664
.
19.
Pulka
,
J.
,
Wiśniewski
,
D.
,
Gołaszewski
,
J.
, and
Białowiec
,
A.
,
2016
, “
Is the Biochar Produced From Sewage Sludge a Good Quality Solid Fuel?
,”
Arch. Environ. Proc.
,
42
(4), pp.
125
134
.
20.
Poudel
,
J.
,
Ohm
,
T. I.
,
Lee
,
S. H.
, and
Oh
,
S. C.
,
2015
, “
A Study on Torrefaction of Sewage Sludge to Enhance Solid Fuel Qualities
,”
Waste Manage
,
40
, pp.
112
118
.
21.
Poudel
,
J.
,
Karki
,
S.
,
Gu
,
J. H.
,
Lim
,
Y.
, and
Oh
,
S. C.
,
2017
, “
Effect of Co-Torrefaction on the Properties of Sewage Sludge and Waste Wood to Enhance Solid Fuel Qualities
,”
J. Residuals Sci. Technol.
,
14
(3), pp.
23
36
.
22.
Atienza-Martínez
,
M.
,
Fonts
,
I.
,
Ábrego
,
J.
,
Ceamanos
,
J.
, and
Gea
,
G.
,
2013
, “
Sewage Sludge Torrefaction in a Fluidized Bed Reactor
,”
Chem. Eng. J.
,
222
, pp.
534
545
.
23.
Atienza-Martínez
,
M.
,
Mastral
,
J. F.
,
Ábrego
,
J.
,
Ceamanos
,
J.
, and
Gea
,
G.
,
2015
, “
Sewage Sludge Torrefaction in an Auger Reactor
,”
Energy Fuels
,
29
(
1
), pp.
160
170
.
24.
Wilk
,
M.
,
Magdziarz
,
A.
, and
Kalemba
,
I.
,
2015
, “
Characterisation of Renewable Fuels' Torrefaction Process With Different Instrumental Techniques
,”
Energy
,
87
, pp.
259
269
.
25.
He
,
C.
,
Giannis
,
A.
, and
Wang
,
J. Y.
,
2013
, “
Conversion of Sewage Sludge to Clean Solid Fuel Using Hydrothermal Carbonization: Hydrochar Fuel Characteristics and Combustion Behavior
,”
Appl. Energy
,
111
, pp.
257
266
.
26.
Danso-Boateng
,
E.
,
Shama
,
G.
,
Wheatley
,
A. D.
,
Martin
,
S. J.
, and
Holdich
,
R. G.
,
2015
, “
Hydrothermal Carbonisation of Sewage Sludge: Effect of Process Conditions on Product Characteristics and Methane Production
,”
Bioresour. Technol.
,
177
, pp.
318
327
.
27.
Popova
,
T. P.
,
Marinova-Garvanska
,
S. M.
,
Kaleva
,
M. D.
,
Zaharinov
,
B. S.
,
Gencheva
,
A. B.
, and
Baykov
,
B. D.
,
2014
, “
Decontamination of Sewage Sludge by Treatment With Calcium Oxide
,”
Int. J. Curr. Microbiol. Appl. Sci.
,
3
(9), pp.
184
192
.
28.
Marcinkowski
,
T.
,
1985
, “
Decontamination of Sewage Sludges
,”
Waste Manage. Res.
,
3
(
1
), pp.
55
64
.
29.
Roy
,
P.
,
Dutta
,
A.
,
Acharya
,
B.
, and
Deen
,
B.
,
2017
, “
An Investigation of Raw and Torrefied Lignocellulosic Biomasses With CaO During Combustion
,”
J. Energy Inst.
, in press.
30.
Sun
,
L.
,
Zhang
,
X.
,
Chen
,
L.
,
Xie
,
X.
,
Yang
,
S.
,
Zhao
,
B.
, and
Si
,
H.
,
2015
, “
Effect of Preparation Method on Structure Characteristics and Fast Pyrolysis of Biomass With Fe/CaO Catalysts
,”
J. Anal. Appl. Pyrolysis
,
116
, pp.
183
189
.
31.
Vichaphund
,
S.
,
Sricharoenchaikul
,
V.
, and
Atong
,
D.
,
2017
, “
Industrial Waste Derived CaO-Based Catalysts for Upgrading Volatiles During Pyrolysis of Jatropha Residues
,”
J. Anal. Appl. Pyrolysis
,
124
, pp.
568
575
.
You do not currently have access to this content.