This paper reports an experimental study of the effect of biochar addition and temperature on hydrogen production in the first phase of the two-phase anaerobic digestion (TPAD) of carbohydrates food waste. Anaerobic digestion (AD) experiments using white bread representing carbohydrate food wastes were conducted in bench scale 100 ml reactors. The cultures with biochar addition were placed in the reactors and incubated at different temperatures (18, 35, and 52 °C) over a period of 8 days. The biochar addition ratio was varied from 0 to 18.6 g l−1. The daily volumetric hydrogen production was measured, and the cumulative yield (YH) and daily production rate (RH) of hydrogen were calculated. Both biochar addition and temperature affected hydrogen production significantly. YH and maximum RH increased as the biochar addition ratio increased from 0 to 10 g l−1 then decreased as the biochar addition ratio further increased up to 18.6 g l−1. At different temperatures, YH varied significantly, increasing from 846 ± 18 ml l−1 at 18 °C to 1475 ± 53 ml l−1 at 35 °C and dropped to 1149 ± 26 ml l−1 at 52 °C. The maximum RH also peaked at 35 °C, reaching 858 ± 57.1 ml l−1 day−1. The effect of biochar addition was more profound under mesophilic conditions. The results of this study confirmed the beneficial effect of biochar addition in hydrogen production of carbohydrate food waste in the TPAD process.

References

References
1.
Parawira
,
W.
,
2004
,
Anaerobic Treatment of Agricultural Residues and Wastewater-Application of High-Rate Reactors
,
Lund University
, Lund, Sweden.
2.
Demirel
,
B.
, and
Yenigün
,
O.
,
2002
, “
Two‐Phase Anaerobic Digestion Processes: A Review
,”
J. Chem. Technol. Biotechnol.
,
77
(
7
), pp.
743
755
.
3.
Parawira
,
W.
,
Read
,
J. S.
,
Mattiasson
,
B.
, and
Björnsson
,
L.
,
2008
, “
Energy Production From Agricultural Residues: High Methane Yields in Pilot-Scale Two-Stage Anaerobic Digestion
,”
Biomass Bioenergy
,
32
(
1
), pp.
44
50
.
4.
Porpatham
,
E.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2007
, “
Effect of Hydrogen Addition on the Performance of a Biogas Fuelled Spark Ignition Engine
,”
Int. J. Hydrogen Energy
,
32
(
12
), pp.
2057
2065
.
5.
Sarkar
,
A.
, and
Saha
,
U. K.
,
2017
, “
Effect of Intake Charge Preheating and Equivalence Ratio in a Dual Fuel Diesel Engine Run on Biogas and Ethanol-Blended Diesel
,”
ASME J. Energy Resour. Technol.
,
140
(4), p.
041802
.
6.
Zhang
,
D.
,
Zhu
,
M.
,
Zhou
,
W.
,
Yani
,
S.
,
Zhang
,
Z.
, and
Wu
,
J.
, “
A Two‐Phase Anaerobic Digestion Process for Biogas Production for Combined Heat and Power Generation for Remote Communities
,”
Handbook of Clean Energy Systems
, Wiley, New York.
7.
Sanusi
,
Y. S.
,
Habib
,
M. A.
, and
Mokheimer
,
E. M. A.
,
2014
, “
Experimental Study on the Effect of Hydrogen Enrichment of Methane on the Stability and Emission of Nonpremixed Swirl Stabilized Combustor
,”
ASME J. Energy Resour. Technol.
,
137
(3), p.
032203
.
8.
Seibert
,
M.
, and
Nieh
,
S.
,
2016
, “
Measurements of Hydrogen-Enriched Combustion of JP-8 in Open Flame
,”
ASME J. Energy Resour. Technol.
,
139
(1), p.
012205
.
9.
Shilapuram
,
V.
, and
Ozalp
,
N.
,
2016
, “
Hydrogen Production by Carbon-Catalyzed Methane Decomposition Via Thermogravimetry
,”
ASME J. Energy Resour. Technol.
,
139
(1), p.
012005
.
10.
Varma
,
A. K.
, and
Mondal
,
P.
,
2016
, “
Physicochemical Characterization and Pyrolysis Kinetic Study of Sugarcane Bagasse Using Thermogravimetric Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(5), p.
052205
.
11.
Zhao
,
Y.
,
Feng
,
D.
,
Zhang
,
Z.
,
Sun
,
S.
,
Che
,
H.
, and
Luan
,
J.
,
2017
, “
Experimental Study on Autothermal Cyclone Air Gasification of Biomass
,”
ASME J. Energy Resour. Technol.
,
140
(4), p.
042001
.
12.
Kordoghli
,
S.
,
Paraschiv
,
M.
,
Tazerout
,
M.
,
Khiari
,
B.
, and
Zagrouba
,
F.
,
2016
, “
Novel Catalytic Systems for Waste Tires Pyrolysis: Optimization of Gas Fraction
,”
ASME J. Energy Resour. Technol.
,
139
(3), p.
032203
.
13.
Sunyoto
,
N. M. S.
,
Zhu
,
M.
,
Zhang
,
Z.
, and
Zhang
,
D.
,
2016
, “
Effect of Biochar Addition on Hydrogen and Methane Production in Two-Phase Anaerobic Digestion of Aqueous Carbohydrates Food Waste
,”
Bioresour. Technol.
,
219
, pp.
29
36
.
14.
Guo
,
X. M.
,
Trably
,
E.
,
Latrille
,
E.
,
Carrere
,
H.
, and
Steyer
,
J.-P.
,
2010
, “
Hydrogen Production From Agricultural Waste by Dark Fermentation: A Review
,”
Int. J. Hydrogen Energy
,
35
, pp.
10660
10673
.
15.
Kim, M. S.
,
Cha, J.
, and
Kim, D. H.
, 2013, “
Fermentative Biohydrogen Production From Solid Wastes
,”
Biohydrogen
,
Elsevier
,
Burlington, MA
, pp.
259
283
.
16.
Lin
,
Y.-H.
,
Juan
,
M.-L.
, and
Hsien
,
H.-J.
,
2011
, “
Effects of Temperature and Initial pH on Biohydrogen Production From Food-Processing Wastewater Using Anaerobic Mixed Cultures
,”
Biodegradation
,
22
(
3
), pp.
551
563
.
17.
Pakarinen
,
O.
,
Lehtomäki
,
A.
, and
Rintala
,
J.
,
2008
, “
Batch Dark Fermentative Hydrogen Production From Grass Silage: The Effect of Inoculum, pH, Temperature and VS Ratio
,”
Int. J. Hydrogen Energy
,
33
(
2
), pp.
594
601
.
18.
Clesceri
,
L. S.
,
Greenberg
,
A. E.
, and
Eaton
,
A. D.
,
1998
,
Standard Methods for the Examination of Water and Wastewater
,
20th ed.
,
APHA American Public Health Association
, Washington, DC.
19.
Zhong
,
W.
,
Zhang
,
Z.
,
Luo
,
Y.
,
Sun
,
S.
,
Qiao
,
W.
, and
Xiao
,
M.
,
2011
, “
Effect of Biological Pretreatments in Enhancing Corn Straw Biogas Production
,”
Bioresour. Technol.
,
102
, pp.
11177
11182
.
20.
Wang
,
C.
,
2008
, “Parallel GC for Complete RGA Analysis,” Agilent Technologies, Santa Clara, CA, Report No.
5989-7438EN
.https://www.agilent.com/cs/library/applications/5989-7437EN.pdf
21.
Luo
,
C.
,
,
F.
,
Shao
,
L.
, and
He
,
P.
,
2015
, “
Application of Eco-Compatible Biochar in Anaerobic Digestion to Relieve Acid Stress and Promote the Selective Colonization of Functional Microbes
,”
Water Res.
,
68
, pp.
710
718
.
22.
Mumme
,
J.
,
Srocke
,
F.
,
Heeg
,
K.
, and
Werner
,
M.
,
2014
, “
Use of Biochars in Anaerobic Digestion
,”
Bioresour. Technol.
,
164
, pp.
189
197
.
23.
Khanal
,
S. K.
,
Chen
,
W.-H.
,
Li
,
L.
, and
Sung
,
S.
,
2004
, “
Biological Hydrogen Production: Effects of pH and Intermediate Products
,”
Int. J. Hydrogen Energy
,
29
(11), pp.
1123
1131
.
24.
Cheong
,
D.-Y.
, and
Hansen
,
C. L.
,
2006
, “
Acidogenesis Characteristics of Natural, Mixed Anaerobes Converting Carbohydrate-Rich Synthetic Wastewater to Hydrogen
,”
Process Biochem.
,
41
(
8
), pp.
1736
1745
.
25.
Dçbowski
,
M.
,
Korzeniewska
,
E.
,
Filipkowska
,
Z.
,
Zieliński
,
M.
, and
Kwiatkowski
,
R.
,
2014
, “
Possibility of Hydrogen Production During Cheese Whey Fermentation Process by Different Strains of Psychrophilic Bacteria
,”
Int. J. Hydrogen Energy
,
39
(5), pp.
1972
1978
.
26.
Alvarez-Guzmán
,
C. L.
,
Oceguera-Contreras
,
E.
,
Ornelas-Salas
,
J. T.
,
Balderas-Hernández
,
V. E.
, and
De León-Rodríguez
,
A.
,
2016
, “
Biohydrogen Production by the Psychrophilic G088 Strain Using Single Carbohydrates as Substrate
,”
Int. J. Hydrogen Energy
,
41
(
19
), pp.
8092
8100
.
You do not currently have access to this content.