This study was aimed at comparing the pyrolysis behavior of several selected biomass samples, namely, pine wood, poplar wood, wheat straw, and sugarcane bagasse, with a particular attention to the effect of lignin. Raw samples were first treated using Soxhlet solvent extraction with a 2:1 (v/v) mixture of toluene/ethanol to remove wax. Lignin was then removed by soaking the dewaxed samples in a 1.0 M sodium chlorite solution at 343 K till the solids became white. Fourier transform infrared (FTIR) spectroscopy analysis was applied to characterize the surface functional groups of the samples. The morphology of the samples before and after delignification treatment was analyzed using scanning electron microscope (SEM). The pyrolysis behavior of the raw and treated biomass samples was studied using a thermogravimetric analyzer (TGA) operating in nitrogen at a constant heating rate of 10 K min−1 from room temperature to the final temperature 823 K. The FTIR and SEM results indicated that lignin can be successfully removed from the raw biomass via the chemical treatment used. As expected, the pyrolysis behavior differed significantly among the various raw biomass samples. However, the pyrolysis behavior of the delignified samples showed almost identical thermal behavior although the temperature associated with the maximum rate of pyrolysis was shifted to a lower temperature regime by ca. 50 K. This suggests that the presence of lignin significantly affected the biomass pyrolysis behavior. Thus, the pyrolysis behavior of the biomass cannot be predicted simply from the individual components without considering their interactions.

References

References
1.
Matas Güell
,
B.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2012
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.
2.
Davies
,
A.
,
Soheilian
,
R.
,
Zhuo
,
C.
, and
Levendis
,
Y. A.
,
2013
, “
Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021101
.
3.
Boateng
,
A. A.
,
Mullen
,
C. A.
,
Osgood-Jacobs
,
L.
,
Carlson
,
P.
, and
Macken
,
N.
,
2012
, “
Mass Balance, Energy, and Exergy Analysis of Bio-Oil Production by Fast Pyrolysis
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
042001
.
4.
Mayor
,
J. R.
, and
Williams
,
A.
,
2011
, “
Residence Time Influence on the Fast Pyrolysis of Loblolly Pine Biomass
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
041801
.
5.
Zhu
,
M.
,
Zhang
,
Z.
,
Zhang
,
Y.
,
Setyawan
,
H.
,
Liu
,
P.
, and
Zhang
,
D.
,
2017
, “
An Experimental Study of the Ignition and Combustion Characteristics of Single Droplets of Biochar-Glycerol-Water Slurry Fuels
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2475
2482
.
6.
Zhu
,
M.
,
Zhang
,
Z.
,
Zhang
,
Y.
,
Liu
,
P.
, and
Zhang
,
D.
,
2017
, “
An Experimental Investigation Into the Ignition and Combustion Characteristics of Single Droplets of Biochar Water Slurry Fuels in Air
,”
Appl. Energy
,
185
(
Pt. 2
), pp.
2160
2167
.
7.
Parker
,
H. W.
,
1981
, “
Engine Fuels From Biomass
,”
ASME J. Energy Resour. Technol.
,
103
(
4
), pp.
344
351
.
8.
Reverchon
,
F.
,
Yang
,
H.
,
Ho
,
T.
,
Yan
,
G.
,
Wang
,
J.
,
Xu
,
Z.
,
Chen
,
C.
, and
Zhang
,
D.
,
2014
, “
A Preliminary Assessment of the Potential of Using an Acacia—Biochar System for Spent Mine Site Rehabilitation
,”
Environ. Sci. Pollut. Res.
,
22
(3), pp.
2138
2144
.
9.
Zhang
,
D.
,
2009
, “
Maximising Environmental and Economic Benefits of Biochar Production Using an Innovative Indirectly Fired Kiln Technology
,”
Asia Pacific Biochar Conference Gold Coast Australia
, Gold Coast, Australia, May 17–20, pp. 55–56.
10.
Mohan
,
D.
,
Sarswat
,
A.
,
Ok
,
Y. S.
, and
Pittman
,
C. U.
, Jr
.,
2014
, “
Organic and Inorganic Contaminants Removal From Water With Biochar, a Renewable, Low Cost and Sustainable Adsorbent—A Critical Review
,”
Bioresour. Technol.
,
160
, pp.
191
202
.
11.
Hosoya
,
T.
,
Kawamoto
,
H.
, and
Saka
,
S.
,
2007
, “
Cellulose–Hemicellulose and Cellulose–Lignin Interactions in Wood Pyrolysis at Gasification Temperature
,”
J. Anal. Appl. Pyrolysis
,
80
(
1
), pp.
118
125
.
12.
Liu
,
Q.
,
Zhong
,
Z.
,
Wang
,
S.
, and
Luo
,
Z.
,
2011
, “
Interactions of Biomass Components During Pyrolysis: A TG-FTIR Study
,”
J. Anal. Appl. Pyrolysis
,
90
(
2
), pp.
213
218
.
13.
Yang
,
H.
,
Yan
,
R.
,
Chen
,
H.
,
Zheng
,
C.
,
Lee
,
D. H.
, and
Liang
,
D. T.
,
2006
, “
In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components:  Hemicellulose, Cellulose and Lignin
,”
Energy Fuels
,
20
(
1
), pp.
388
393
.
14.
Poletto
,
M.
,
Zattera
,
A. J.
, and
Santana
,
R. M. C.
,
2012
, “
Thermal Decomposition of Wood: Kinetics and Degradation Mechanisms
,”
Bioresour. Technol.
,
126
, pp.
7
12
.
15.
Wang
,
J.
,
Wang
,
G.
,
Zhang
,
M.
,
Chen
,
M.
,
Li
,
D.
,
Min
,
F.
,
Chen
,
M.
,
Zhang
,
S.
,
Ren
,
Z.
, and
Yan
,
Y.
,
2006
, “
A Comparative Study of Thermolysis Characteristics and Kinetics of Seaweeds and Fir Wood
,”
Process Biochem.
,
41
(
8
), pp.
1883
1886
.
16.
Abe
,
K.
,
Iwamoto
,
S.
, and
Yano
,
H.
,
2007
, “
Obtaining Cellulose Nanofibers With a Uniform Width of 15 Nm From Wood
,”
Biomacromolecules
,
8
(
10
), pp.
3276
3278
.
17.
Adel
,
A. M.
,
Abd El-Wahab
,
Z. H.
,
Ibrahim
,
A. A.
, and
Al-Shemy
,
M. T.
,
2011
, “
Characterization of Microcrystalline Cellulose Prepared From Lignocellulosic Materials—Part II: Physicochemical Properties
,”
Carbohydrate Polym.
,
83
(
2
), pp.
676
687
.
18.
Lacayo
,
C. I.
,
Malkin
,
A. J.
,
Holman
,
H.-Y. N.
,
Chen
,
L.
,
Ding
,
S.-Y.
,
Hwang
,
M. S.
, and
Thelen
,
M. P.
,
2010
, “
Imaging Cell Wall Architecture in Single Zinnia Elegans Tracheary Elements
,”
Plant Physiol.
,
154
(
1
), pp.
121
133
.
19.
Le Troedec
,
M.
,
Sedan
,
D.
,
Peyratout
,
C.
,
Bonnet
,
J. P.
,
Smith
,
A.
,
Guinebretiere
,
R.
,
Gloaguen
,
V.
, and
Krausz
,
P.
,
2008
, “
Influence of Various Chemical Treatments on the Composition and Structure of Hemp Fibres
,”
Compos. Part A: Appl. Sci. Manuf.
,
39
(
3
), pp.
514
522
.
20.
Liu
,
W.
,
Mohanty
,
A. K.
,
Drzal
,
L. T.
,
Askel
,
P.
, and
Misra
,
M.
,
2004
, “
Effects of Alkali Treatment on the Structure, Morphology and Thermal Properties of Native Grass Fibers as Reinforcements for Polymer Matrix Composites
,”
J. Mater. Sci.
,
39
(
3
), pp.
1051
1054
.
21.
Thygesen
,
A.
,
Oddershede
,
J.
,
Lilholt
,
H.
,
Thomsen
,
A. B.
, and
Ståhl
,
K.
,
2005
, “
On the Determination of Crystallinity and Cellulose Content in Plant Fibres
,”
Cellulose
,
12
(
6
), pp.
563
576
.
22.
Bussemaker
,
M. J.
,
2013
, “Parametric Influences of Ultrasound in Homogeneous and Heterogeneous Mixtures for Biofuel and Biorefinery Applications,”
Ph.D. thesis
, The University of Western Australia, Crawley, Australia.
23.
Sluiter
,
A.
,
Hames
,
B.
,
Ruiz
,
R.
,
Scarlata
,
C.
,
Sluiter
,
J.
, and
Templeton
,
D.
,
2006
, “Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-510-42623
.
24.
Varma
,
A. K.
, and
Mondal
,
P.
,
2016
, “
Physicochemical Characterization and Pyrolysis Kinetic Study of Sugarcane Bagasse Using Thermogravimetric Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052205
.
25.
Silva
,
M. C.
,
Lopes
,
O. R.
,
Colodette
,
J. L.
,
Porto
,
A. O.
,
Rieumont
,
J.
,
Chaussy
,
D.
,
Belgacem
,
M. N.
, and
Silva
,
G. G.
,
2008
, “
Characterization of Three Non-Product Materials From a Bleached Eucalyptus Kraft Pulp Mill, in View of Valorising Them as a Source of Cellulose Fibres
,”
Ind. Crops Prod.
,
27
(
3
), pp.
288
295
.
26.
Jähn
,
A.
,
Schröder
,
M. W.
,
Füting
,
M.
,
Schenzel
,
K.
, and
Diepenbrock
,
W.
,
2002
, “
Characterization of Alkali Treated Flax Fibres by Means of FT Raman Spectroscopy and Environmental Scanning Electron Microscopy
,”
Spectrochim. Acta. Part A: Mol. Biomol. Spectrosc.
,
58
(
10
), pp.
2271
2279
.
27.
Youssefian
,
S.
, and
Rahbar
,
N.
,
2015
, “
Molecular Origin of Strength and Stiffness in Bamboo Fibrils
,”
Sci. Rep.
,
5
, p.
11116
.
28.
Pu
,
Y.
,
Hu
,
F.
,
Huang
,
F.
,
Davison
,
B. H.
, and
Ragauskas
,
A. J.
,
2013
, “
Assessing the Molecular Structure Basis for Biomass Recalcitrance During Dilute Acid and Hydrothermal Pretreatments
,”
Biotechnol. Biofuels
,
6
(
1
), p.
15
.
29.
Donohoe
,
B. S.
,
Decker
,
S. R.
,
Tucker
,
M. P.
,
Himmel
,
M. E.
, and
Vinzant
,
T. B.
,
2008
, “
Visualizing Lignin Coalescence and Migration Through Maize Cell Walls Following Thermochemical Pretreatment
,”
Biotechnol. Bioeng.
,
101
(
5
), pp.
913
925
.
30.
Sannigrahi
,
P.
,
Kim
,
D. H.
,
Jung
,
S.
, and
Ragauskas
,
A.
,
2011
, “
Pseudo-Lignin and Pretreatment Chemistry
,”
Energy Environ. Sci.
,
4
(
4
), pp.
1306
1310
.
31.
Sharma
,
R. K.
,
Wooten
,
J. B.
,
Baliga
,
V. L.
,
Lin
,
X.
,
Geoffrey Chan
,
W.
, and
Hajaligol
,
M. R.
,
2004
, “
Characterization of Chars From Pyrolysis of Lignin
,”
Fuel
,
83
(
11–12
), pp.
1469
1482
.
32.
Zhang
,
Z.
,
Yani
,
S.
,
Zhu
,
M.
,
Li
,
J.
, and
Zhang
,
D.
,
2013
, “Effect of Temperature and Heating Rate in Pyrolysis on the Yield, Structure and Oxidation Reactivity of Pine Sawdust Biochar,” Chemeca, Brisbane, Australia, Jan. 1, pp. 863–869.
You do not currently have access to this content.