Heat transfer to supercritical water in heated tubes and channels is relevant for steam generators in conventional power plants and future concepts for supercritical nuclear and solar-thermal power plants. A new experimental facility, the high pressure evaporation rig, setup at the Institute for Energy Systems (Technische Universität München) aims to provide heat transfer data to fill the existing knowledge gaps at these conditions. The test rig consists of a closed-loop high pressure cycle, in which de-ionized water is fed to an instrumented test section heated by the application of direct electrical current. It is designed to withstand a maximum pressure of 380 bar at 580 °C in the test section. The maximum power rating of the system is 1 MW. The test section is a vertical tube (material: AISI A213/P91) with a 7000 mm heated length, a 15.7 mm internal diameter, and a wall thickness of 5.6 mm. It is equipped with 70 thermocouples distributed evenly along its length. It enables the determination of heat transfer coefficients in the supercritical region at various steady-state or transient conditions. In a first series of tests, experiments are conducted to investigate normal and deteriorated heat transfer (DHT) under vertical upward flow conditions. The newly generated data and literature data are used to evaluate different correlations available for modeling heat transfer coefficients at supercritical pressures.

References

References
1.
Jin
,
H.
,
Ishida
,
M.
,
Kobayashi
,
M.
, and
Nunokawa
,
M.
,
1997
, “
Exergy Evaluation of Two Current Advanced Power Plants: Supercritical Steam Turbine and Combined Cycle
,”
ASME J. Energy Resour. Technol.
,
119
(
4
), pp.
250
256
.
2.
Gardner
,
W.
,
McNaughton
,
R.
,
Kim
,
J. S.
, and
Barrett
,
S.
,
2012
, “
Development of a Solar Thermal Supercritical Steam Generator
,”
50th Annual Conference of the Australian Solar Energy Society
, Melbourne, Australia, Dec. 6–7.
3.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2007
,
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
, New York.
4.
Schulenberg
,
T.
, and
Starflinger
,
J.
,
2012
,
High Performance Light Water Reactor Design and Analyses
,
KIT Scientific Publishing
,
Karlsruhe, Germany
.
5.
Wagner
,
W.
, and
Kruse
,
A.
,
1998
,
Zustandsgrößen Von Wasser Und Wasserdampf
,
Springer Verlag
,
Berlin
.
6.
Lee
,
R. A.
, and
Haller
,
K. H.
,
1974
, “
Supercritical Water Heat Transfer Developments and Applications
,”
Fifth International Heat Transfer Conference
, Tokyo, Japan, Sept. 3–7, pp.
335
339
.
7.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
, “
Forced Convection Heat Transfer to Fluids at Supercritical Pressures
,”
Turbulent Forced Convection in Channels and Bundles
,
Hemisphere Publishing Corporation
,
New York
.
8.
Goldmann
,
K.
,
1961
, “
Heat Transfer to Supercritical Water at 5000 Psi Flowing at High Mass Flow Rates Through Round Tubes
,”
Int. Dev. Heat Transfer
,
3
, pp.
561
568
.
9.
Ackerman
,
J. W.
,
1970
, “
Pseudoboiling Heat Transfer to Supercritical Pressure Water in Smooth and Ribbed Tubes
,”
ASME J. Heat Transfer
,
92
(
3
), pp.
490
498
.
10.
Schatte
,
G. A.
,
Kohlhepp
,
A.
,
Wieland
,
C.
, and
Spliethoff
,
H.
,
2017
, “
Development of a New Empirical Correlation for the Prediction of the Onset of the Deterioration of Heat Transfer to Supercritical Water in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1333
1341
.
11.
Chen
,
W.
,
Fang
,
X.
,
Xu
,
Y.
, and
Su
,
X.
,
2015
, “
An Assessment of Correlations of Forced Convection Heat Transfer to Water at Supercritical Pressure
,”
Ann. Nucl. Energy
,
76
, pp.
451
460
.
12.
Chen
,
W.
, and
Fang
,
X.
,
2014
, “
A New Heat Transfer Correlation for Supercritical Water Flowing in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
78
, pp.
156
160
.
13.
Mokry
,
S.
,
Pioro
,
I.
,
Farah
,
A.
,
King
,
K.
,
Gupta
,
S.
,
Peiman
,
W.
, and
Kirillov
,
P.
,
2011
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1126
1136
.
14.
Petukhov
,
B. S.
,
Kurganov
,
V. A.
, and
Ankudinov
,
V. B.
,
1983
, “
Heat Transfer and Flow Resistance in the Turbulent Pipe-Flow of a Fluid With Near-Critical State Parameters
,”
High Temp.
,
21
(
1
), pp.
92
100
.
15.
Swenson
,
H. S.
,
Carver
,
J. R.
, and
Kakarala
,
C. R.
,
1965
, “
Heat Transfer to Supercritical Water in Smooth-Bore Tubes
,”
ASME J. Heat Transfer
,
87
(
4
), pp.
477
484
.
16.
Koshizuka
,
S.
,
Takano
,
N.
, and
Oka
,
Y.
,
1995
, “
Numerical Analysis of Deterioration Phenomena in Heat Transfer to Supercritical Water
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3077
3084
.
17.
Vikhrev
,
Y. V.
,
Barulin
,
Y. D.
, and
Kon'Kov
,
A. S.
,
1967
, “
A Study of Heat Transfer in Vertical Tubes at Supercritical Pressures
,”
Therm. Eng.
,
14
(
9
), pp.
116
119
.
18.
Styrikovich
,
M. A.
,
Margulova
,
T. K.
, and
Miropol'skii
,
Z. L.
,
1967
, “
Problems in the Development of Designs of Supercritical Boilers
,”
Therm. Eng.
,
14
(
6
), pp.
5
9
.
19.
Yamagata
,
K.
,
Nishikawa
,
K.
,
Hasegawa
,
S.
,
Fujii
,
T.
, and
Yoshida
,
S.
,
1972
, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2575
2593
.
20.
Cheng
,
X.
,
Yang
,
Y. H.
, and
Huang
,
S. F.
,
2009
, “
A Simplified Method for Heat Transfer Prediction of Supercritical Fluids in Circular Tubes
,”
Ann. Nucl. Energy
,
36
(
8
), pp.
1120
1128
.
21.
Li
,
Z.
,
Zhang
,
D.
,
Wu
,
Y.
,
Lu
,
J.
, and
Liu
,
Q.
,
2014
, “
A New Criterion for Predicting Deterioration of Heat Transfer to Supercritical Water in Smooth Tubes
,”
Proc. CSEE
,
34
(
35
), pp.
6304
6310
.
You do not currently have access to this content.