In order to study the effects of particle size on the determination of pore structure in shale, the outcrop of Ordovician Wufeng (WF) and Silurian Longmaxi shale (LMX) samples from Sichuan basin were chosen and crushed into various particle sizes. Then, pore structure was analyzed by using low-pressure gas adsorption (LPGA) tests. The results show that the pore of shales is mainly composed of slit-type pores and open pores. The specific surface areas of shale are mainly contributed by micropores, while the largest proportion of the total pore volume in shale is contributed by mesopores. With the decreasing of particle size, the specific surface area of both samples is decreased, while average pore diameter and the total pore volume are increased gradually. The influences of particle size on the pore structure parameters are more significant for micropore and macropore, as the particle sizes decrease from 2.36 mm to 0.075 mm, the volume of micropores in Longmaxi shale increases from 0.283 cm3/100 g to 0.501 cm3/100 g with an increment almost 40%, while the volume of macropores decreases from 0.732 cm3/100 g to 0.260 cm3/100 g with a decrement about 50%. This study identified the fractal dimensions at relative pressures of 0–0.50 and 0.50–0.995 as D1 and D2, respectively. D1 increases with the decrease of particle size of shale, while D2 shows an opposite tendency in both shale samples.

References

References
1.
IEA,
2015
, “
World Energy Outlook 2015
,” International Energy Agency, Paris, France, accessed Jan. 24, 2018, https://www.iea.org/Textbase/npsum/WEO2015SUM.pdf
2.
Curtis
,
J. B.
,
2002
, “
Fractured Shale-Gas Systems
,”
AAPG Bull.
,
86
(
11
), pp.
1921
1938
.
3.
Mengal
,
S. A.
,
2010
,
Accounting for Adsorbed Gas and Its Effect on Production Behavior of Shale Gas Reservoirs
,
Texas A & M University
,
College Station, TX
.
4.
Lu
,
X. C.
,
Li
,
F. C.
, and
Watson
,
A. T.
,
1995
, “
Adsorption Studies of Natural Gas Storage in Devonian Shales
,”
SPE Form. Eval.
,
10
(
2
), pp.
109
113
.
5.
Lior
,
N.
,
2016
, “
Exergy, Energy, and Gas Flow Analysis of Hydrofractured Shale Gas Extraction
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
061601
.
6.
Tunde
,
O.
, Jr
.,
Wang, John
,
Y. L.
, and
Ertekin
,
T.
,
2013
, “
Factors Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013402
.
7.
Xu
,
R.
,
Zeng
,
K.
,
Zhang
,
C.
, and
Jiang
,
P.
,
2017
, “
Assessing the Feasibility and CO2 Storage Capacity of CO2 Enhanced Shale Gas Recovery Using Triple-Porosity Reservoir Model
,”
Appl. Therm. Eng.
,
115
, pp.
1306
1314
.
8.
Du
,
X.
,
Gu
,
M.
,
Duan
,
S.
, and
Xian
,
X.
,
2016
, “
Investigation of CO2–CH4 Displacement and Transport in Shale for Enhanced Shale Gas Recovery and CO2 Sequestration
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012909
.
9.
Cristancho-Albarracin
,
D.
,
Akkutlu
,
I. Y.
,
Criscenti
,
L. J.
, and
Wang
,
Y.
,
2017
, “
Shale Gas Storage in Kerogen Nanopores With Surface Heterogeneities
,”
Appl. Geochem.
,
84
, pp.
1
10
.
10.
Busch
,
A.
,
Alles
,
S.
,
Gensterblum
,
Y.
,
Prinz
,
D.
,
Dewhurst
,
D. N.
,
Raven
,
M. D.
,
Stanjek
,
H.
, and
Krooss
,
B. M.
,
2008
, “
Carbon Dioxide Storage Potential of Shales
,”
Int. J. Greenhouse Gas Control
,
2
(
3
), pp.
297
308
.
11.
Tian
,
H.
,
Pan
,
L.
,
Xiao
,
X.
,
Wilkins
,
R. W. T.
,
Meng
,
Z.
, and
Huang
,
B.
,
2013
, “
A Preliminary Study on the Pore Characterization of Lower Silurian Black Shales in the Chuandong Thrust Fold Belt, Southwestern China Using Low Pressure N2 Adsorption and FE-SEM Methods
,”
Mar. Petrol. Geol.
,
48
, pp.
8
19
.
12.
Sun
,
M.
,
Yu
,
B.
,
Hu
,
Q.
,
Zhang
,
Y.
,
Li
,
B.
,
Yang
,
R.
,
Melnichenko
,
Y. B.
, and
Cheng
,
G.
,
2017
, “
Pore Characteristics of Longmaxi Shale Gas Reservoir in the Northwest of Guizhou, China: Investigations Using Small-Angle Neutron Scattering (SANS), Helium Pycnometry, and Gas Sorption Isotherm
,”
Int. J. Coal Geol.
,
171
, pp.
61
68
.
13.
Sun
,
M.
,
Yu
,
B.
,
Hu
,
Q.
,
Yang
,
R.
,
Zhang
,
Y.
, and
Li
,
B.
,
2017
, “
Pore Connectivity and Tracer Migration of Typical Shales in South China
,”
Fuel
,
203
, pp.
32
46
.
14.
Javadpour
,
F.
,
Farshi
,
M. M.
, and
Amrein
,
M.
,
2012
, “
Atomic-Force Microscopy: A New Tool for Gas-Shale Characterization
,”
J. Can. Petrol. Technol.
,
51
(
4
), pp.
236
243
.
15.
Hübner
,
W.
,
2014
, “
Studying the Pore Space of Cuttings by NMR and μCT
,”
J. Appl. Geophys.
,
104
, pp.
97
105
.
16.
Labani
,
M. M.
,
Rezaee
,
R.
,
Saeedi
,
A.
, and
Hinai
,
A. A.
,
2013
, “
Evaluation of Pore Size Spectrum of Gas Shale Reservoirs Using Low Pressure Nitrogen Adsorption, Gas Expansion and Mercury Porosimetry: A Case Study From the Perth and Canning Basins, Western Australia
,”
J. Petrol. Sci. Eng.
,
112
, pp.
7
16
.
17.
Arns
,
C. H.
,
2004
, “
A Comparison of Pore Size Distributions Derived by NMR and X-Ray-CT Techniques
,”
Phys. A
,
339
(
1–2
), pp.
159
165
.
18.
Chen
,
S.
,
Liaw
,
H. K.
, and
Watson
,
A. T.
,
1994
, “
Measurements and Analysis of Fluid Saturation-Dependent NMR Relaxation and Linebroadening in Porous Media
,”
Magn. Reson. Imaging
,
12
(
2
), pp.
201
202
.
19.
Stock
,
J. M.
,
1994
, “
International Union of Pure and Applied Chemistry & Mdash; Physical Chemistry Division: Quantities, Units and Symbols in Physical Chemistry, 2nd Ed., Prepared for Publication by: I. Mills, T. Cvitaš, K. Homann, N. Kallay, K. Kuchitsu, Blackwell Scientific Pu
,”
Berichte Der Bunsengesellschaft Für Physikalische Chem.
,
98
(
4
), pp.
645
645
.
20.
Dokhani
,
V.
,
Yu
,
M.
,
Miska
,
S. Z.
, and
Bloys
,
J.
,
2015
, “
The Effects of Anisotropic Transport Coefficients on Pore Pressure in Shale Formations
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032905
.
21.
Ji
,
W.
,
Song
,
Y.
,
Rui
,
Z.
,
Meng
,
M.
, and
Huang
,
H.
,
2017
, “
Pore Characterization of Isolated Organic Matter From High Matured Gas Shale Reservoir
,”
Int. J. Coal Geol.
,
174
, pp.
31
40
.
22.
Zhang
,
Y.
,
Shao
,
D.
,
Yan
,
J.
,
Jia
,
X.
,
Li
,
Y.
,
Yu
,
P.
, and
Zhang
,
T.
,
2016
, “
The Pore Size Distribution and Its Relationship With Shale Gas Capacity in Organic-Rich Mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China
,”
J. Nat. Gas Geosci.
,
1
(
3
), pp.
213
220
.
23.
Wang
,
Y.
,
Zhu
,
Y.
,
Liu
,
S.
, and
Zhang
,
R.
,
2016
, “
Pore Characterization and Its Impact on Methane Adsorption Capacity for Organic-Rich Marine Shales
,”
Fuel
,
181
, pp.
227
237
.
24.
Wang
,
P.
,
Jiang
,
Z.
,
Chen
,
L.
,
Yin
,
L.
,
Li
,
Z.
,
Zhang
,
C.
,
Tang
,
X.
, and
Wang
,
G.
,
2016
, “
Pore Structure Characterization for the Longmaxi and Niutitang Shales in the Upper Yangtze Platform, South China: Evidence From Focused Ion Beam–He Ion Microscopy, Nano-Computerized Tomography and Gas Adsorption Analysis
,”
Mar. Petrol. Geol.
,
77
, pp.
1323
1337
.
25.
Dong
,
T.
,
Harris
,
N. B.
,
Ayranci
,
K.
,
Twemlow
,
C. E.
, and
Nassichuk
,
B. R.
,
2015
, “
Porosity Characteristics of the Devonian Horn River Shale, Canada: Insights From Lithofacies Classification and Shale Composition
,”
Int. J. Coal Geol.
,
141–142
, pp.
74
90
.
26.
Chalmers
,
G. R. L.
, and
Bustin
,
R. M.
,
2015
, “
Porosity and Pore Size Distribution of Deeply-Buried Fine-Grained Rocks: Influence of Diagenetic and Metamorphic Processes on Shale Reservoir Quality and Exploration
,”
J. Unconv. Oil Gas Resour.
,
12
, pp.
134
142
.
27.
Han
,
H.
,
Cao
,
Y.
,
Chen
,
S.-J.
,
Lu
,
J.-G.
,
Huang
,
C.-X.
,
Zhu
,
H.-H.
,
Zhan
,
P.
, and
Gao
,
Y.
,
2016
, “
Influence of Particle Size on Gas-Adsorption Experiments of Shales: An Example From a Longmaxi Shale Sample From the Sichuan Basin, China
,”
Fuel
,
186
, pp.
750
757
.
28.
Kong
,
L. W.
, and
Guo
,
A. G.
,
2011
, “
Effect of Water Content on Pore Size Distribution of Red Clay
,”
Conference on Computer Methods for Geomechanics: Frontiers and New Applications
, Melbourne, Australia, May 9–11, pp.
523
527
.
29.
Wei
,
M.
,
Xiong
,
Y.
,
Zhang
,
L.
,
Li
,
J.
, and
Peng
,
P. A.
,
2016
, “
The Effect of Sample Particle Size on the Determination of Pore Structure Parameters in Shales
,”
Int. J. Coal Geol.
,
163
, pp.
177
185
.
30.
Chen
,
Y.
,
Wei
,
L.
,
Mastalerz
,
M.
, and
Schimmelmann
,
A.
,
2015
, “
The Effect of Analytical Particle Size on Gas Adsorption Porosimetry of Shale
,”
Int. J. Coal Geol.
,
138
, pp.
103
112
.
31.
Mastalerz
,
M.
,
Hampton
,
L.
,
Drobniak
,
A.
, and
Loope
,
H.
,
2017
, “
Significance of Analytical Particle Size in Low-Pressure N2 and CO2 Adsorption of Coal and Shale
,”
Int. J. Coal Geol.
,
178
, pp.
122
131
.
32.
Chen
,
Y.
,
Zou
,
C.
,
Mastalerz
,
M.
,
Hu
,
S.
,
Gasaway
,
C.
, and
Tao
,
X.
,
2015
, “
Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review
,”
Int. J. Mol. Sci.
,
16
(
12
), pp.
30223
30250
.
33.
Sing
,
K. S. W.
,
1985
, “
Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984)
,”
Pure Appl. Chem.
,
57
(
4
), pp.
603
619
.https://www.iupac.org/publications/pac/57/4/0603/
34.
Brunauer
,
S.
,
Deming
,
L. S.
,
Deming
,
W. E.
, and
Teller
,
E.
,
1940
, “
On a Theory of the Van Der Waals Adsorption of Gases
,”
J. Am. Chem. Soc.
,
62
(
7
), pp.
1723
1732
.
35.
Thommes
,
M.
,
Kaneko
,
K.
,
Neimark
,
A. V.
,
Olivier
,
J. P.
,
Rodriguez-Reinoso
,
F.
,
Rouquerol
,
J.
, and
Sing
,
K. S. W.
,
2015
, “
Physisorption of Gases, With Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report)
,”
Chem. Int.
,
87
(
1
), pp.
25
25
.
36.
Lu
,
X. C.
,
Li
,
F. C.
, and
Watson
,
A. T.
,
1995
, “
Adsorption Measurements in Devonian Shales
,”
Fuel
,
74
(
4
), pp.
599
603
.
37.
Pan
,
J.
,
Peng
,
C.
,
Wan
,
X.
,
Zheng
,
D.
,
Lv
,
R.
, and
Wang
,
K.
,
2017
, “
Pore Structure Characteristics of Coal-Bearing Organic Shale in Yuzhou Coalfield, China Using Low Pressure N2 Adsorption and FESEM Methods
,”
J. Petrol. Sci. Eng.
,
153
, pp.
234
243
.
38.
Clarkson
,
C. R.
,
Solano
,
N.
,
Bustin
,
R. M.
,
Bustin
,
A. M. M.
,
Chalmers
,
G. R. L.
,
He
,
L.
,
Melnichenko
,
Y. B.
,
Radliński
,
A. P.
, and
Blach
,
T. P.
,
2013
, “
Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion
,”
Fuel
,
103
(
1
), pp.
606
616
.
39.
Jiang
,
F.
,
Chen
,
D.
,
Wang
,
Z.
,
Xu
,
Z.
,
Chen
,
J.
,
Liu
,
L.
,
Huyan
,
Y.
, and
Liu
,
Y.
,
2016
, “
Pore Characteristic Analysis of a Lacustrine Shale: A Case Study in the Ordos Basin, NW China
,”
Mar. Petrol. Geol.
,
73
, pp.
554
571
.
40.
Lutynski
,
M.
, and
González
,
M. G.
,
2016
, “
Characteristics of Carbon Dioxide Sorption in Coal and Gas Shale—The Effect of Particle Size
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
558
565
.
41.
Avnir
,
D.
, and
Jaroniec
,
M.
,
1989
, “
An Isotherm Equation for Adsorption on Fractal Surfaces of Heterogeneous Porous Materials
,”
Langmuir
,
5
(
6
), pp.
1431
1433
.
42.
Pfeifer
,
P.
, and
Avnir
,
D.
,
1983
, “
Chemistry Non-Integral Dimensions Between Two and Three[J]
,”
J. Chem. Phys.
,
79
, pp.
3369
3558
.https://www.researchgate.net/publication/312371055_Chemistry_nonintegral_dimensions_between_two_and_three_J
43.
Shao
,
X.
,
Pang
,
X.
,
Li
,
Q.
,
Wang
,
P.
,
Chen
,
D.
,
Shen
,
W.
, and
Zhao
,
Z.
,
2017
, “
Pore Structure and Fractal Characteristics of Organic-Rich Shales: A Case Study of the Lower Silurian Longmaxi Shales in the Sichuan Basin, SW China
,”
Mar. Petrol. Geol.
,
80
, pp.
192
202
.
44.
Ji
,
W.
,
Song
,
Y.
,
Jiang
,
Z.
,
Meng
,
M.
,
Liu
,
Q.
,
Chen
,
L.
,
Wang
,
P.
,
Gao
,
F.
, and
Huang
,
H.
,
2016
, “
Fractal Characteristics of Nano-Pores in the Lower Silurian Longmaxi Shales From the Upper Yangtze Platform, South China
,”
Mar. Petrol. Geol.
,
78
, pp.
88
98
.
45.
Wang
,
M.
,
Xue
,
H.
,
Tian
,
S.
,
Wilkins
,
R. W. T.
, and
Wang
,
Z.
,
2015
, “
Fractal Characteristics of Upper Cretaceous Lacustrine Shale From the Songliao Basin, NE China
,”
Mar. Petrol. Geol.
,
67
, pp.
144
153
.
46.
Yao
,
Y.
,
Liu
,
D.
,
Tang
,
D.
,
Tang
,
S.
, and
Huang
,
W.
,
2008
, “
Fractal Characterization of Adsorption-Pores of Coals From North China: An Investigation on CH4 Adsorption Capacity of Coals
,”
Int. J. Coal Geol.
,
73
(
1
), pp.
27
42
.
47.
Saha
,
M.
,
Dally
,
B. B.
,
Medwell
,
P. R.
, and
Chinnici
,
A.
,
2017
, “
Effect of Particle Size on the MILD Combustion Characteristics of Pulverised Brown Coal
,”
Fuel Process. Technol.
,
155
, pp.
74
87
.
48.
Liu
,
Y.
,
Wang
,
W.
, and
Wang
,
A.
,
2012
, “
Effect of Dry Grinding on the Microstructure of Palygorskite and Adsorption Efficiency for Methylene Blue
,”
Powder Technol.
,
225
(
7
), pp.
124
129
.
49.
Mowar
,
S.
,
Zaman
,
M.
,
Stearns
,
D. W.
, and
Roegiers
,
J. C.
,
1996
, “
Micro-Mechanisms of Pore Collapse in Limestone
,”
J. Petrol. Sci. Eng.
,
15
(
2–4
), pp.
221
235
.
50.
Clarkson
,
C. R.
, and
Bustin
,
R. M.
,
1999
, “
The Effect of Pore Structure and Gas Pressure Upon the Transport Properties of Coal: A Laboratory and Modeling Study. 2. Adsorption Rate Modeling
,”
Fuel
,
78
(
11
), pp.
1345
1362
.
51.
Zhang
,
Z.
,
Zhang
,
Y.
,
Yan
,
C.
, and
Liu
,
Y.
,
2017
, “
Influence of Crushing Index on Properties of Recycled Aggregates Pervious Concrete
,”
Constr. Build. Mater.
,
135
, pp.
112
118
.
You do not currently have access to this content.