The gas–liquid cylindrical cyclone (GLCC) is a simple, compact, and low-cost separator, which provides an economically attractive alternative to conventional gravity-based separators over a wide range of applications. Over the past 22 years, more than 6500 GLCCs have been installed around the world by the petroleum and related industries. However, to date no systematic study has been carried out on its structural integrity. The GLCC inlet section design is a key parameter, which is crucial for its performance and proper operation. This paper presents finite element analysis simulation results aimed at investigating the effect of various parameters on the inlet section structural integrity. Finally, recommendations on design modifications are presented, directed at strengthening the inlet section.

References

References
1.
Mohan
,
R. S.
, and
Shoham
,
O.
,
2011
, “
Compact Multiphase Separation Technology—From the Lab to the Field
,”
21st ITU Petroleum and Natural Gas Seminar and Exhibition
, Istanbul, Turkey, June 23–24.
2.
Mohan
,
R. S.
, and
Shoham
,
O.
,
2011
, “
Compact Multiphase Separation Technology—From the Lab to the Field
,”
11th Multiphase Measurement Roundtable (MMR)
, Tulsa, OK, May 12–13.
3.
Kolla
,
S. S.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2016
, “
Experimental Investigation of Liquid Carry-Over in GLCC Separators for 3-Phase Flow
,”
ASME
Paper No. IMECE2016-67457.
4.
Shoham
,
O.
, and
Kouba
,
G. E.
,
1998
, “
The State-of-the-Art of Gas-Liquid Cylindrical Cyclone Compact Separation Technology
,”
J. Pet. Technol.
,
50
(
4
), pp.
54
61
.
5.
Kouba
,
G. E.
,
Wang
,
S.
,
Gomez
,
L. E.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2006
, “
Review of the State-of-the-Art Gas-Liquid Cylindrical Cyclone (GLCC©) Technology—Field Applications
,”
SPE International Oil and Gas Conference and Exhibition
, Beijing, China, Dec. 5–7,
SPE
Paper No. SPE-104256-MS.
6.
Mohan
,
R. S.
, and
Shoham
,
O.
,
1999
, “
Technologies Under Development: Design and Development of Gas-Liquid Cylindrical Cyclone Compact Separators for Three-Phase Flow
,”
Oil and Gas Conference-Technology Options for Producers' Survival
, Dallas, TX, June 28–30.http://tustp.org/publications/three_phase_design_99.pdf
7.
Bodunrin
,
A. A.
,
Igbokwe
,
C. H.
,
Cunningham
,
L. D.
, and
Kouba
,
G. E.
,
1998
, “
A New Approach to Supplying Gas for Gas Lift Operations Using Gas Liquid Cylindrical Cyclone (GLCC)
,” ATCE Meeting, New Orleans, LA, Sept. 27–30, Paper No. SPE 48991.
8.
Molina
,
R.
,
Wang
,
S.
,
Gomez
,
L. E.
,
Mohan
,
R.
,
Shoham
,
O.
, and
Kouba
,
G. E.
,
2007
, “
Wet Gas Separation in Gas-Liquid Cylindrical Cyclone (GLCC©) Separator
,”
ASME
Paper No. OMAE2007-29386.
9.
Marrelli
,
J. D.
,
Rubel
,
M. T.
,
Yocum
,
B. T.
,
Dunbar
,
D. N.
,
Tallett
,
M. R.
,
Mohan
,
R. S.
,
Shoham
,
O.
,
Brahmantyo
,
A. K.
,
Montolalu
,
D.
,
Wahyudi
,
D.
, and
Solomon
,
K.
,
2000
, “
Methods for Optimal Matching Separation and Metering Facilities for Performance, Cost and Size: Practical Examples From Duri Area 10 Expansion
,”
ETCE/OMAE Conference of ASME Petroleum Division
, New Orleans, LA, Feb. 14–17, Paper No. ETCE2000/ER-10165.
10.
Mohan
,
R. S.
, and
Shoham
,
O.
,
2011
, “
Compact Multiphase Separation Technology—From the Lab to the Field
,”
Sixth AIChE/SPE Joint Workshop on Challenges in Flow Assurance
, Houston, TX, Sept. 26–28.
11.
Mohan
,
R. S.
,
Shoham
,
O.
,
Gomez
,
L. E.
, and
Wang
,
S.
,
2003
, “
Application of Gas-Liquid Cylindrical Cyclone (GLCC©) in Hydrocarbon Industry With Specific Reference to Deepwater Technology
,”
Fifth International Petroleum Conference and Exhibition (Petrotech 2003)
, New Delhi, India, Jan. 9–12.
12.
Gomez
,
L.
,
Mohan
,
R.
, and
Shoham
,
O.
,
1999
, “
Design and Performance of Gas-Liquid Cylindrical Cyclone (GLCC©) Separators for Multiphase Production Systems
,”
American Society of Filtration (AFS) International Meeting
, Boston, MA, p. 353.
13.
Gomez
,
L. E.
,
Mohan
,
R. S.
,
Shoham
,
O.
,
Marrelli
,
J.
, and
Kouba
,
G. E.
,
1999
, “
Aspect Ratio Modeling and Design Procedure for GLCC© Compact Separators
,”
ASME J. Energy Resour. Technol.
,
121
(
1
), pp.
15
23
.
14.
Gomez
,
L. E.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2000
, “
Gas Carry-Under and Flow Pattern Prediction in Gas-Liquid Cylindrical Cyclone (GLCC©) Separators
,”
American Filtration and Separations Society (AFS) 13th Annual Technical Conference and Exposition
, Myrtle Beach, SC, Mar. 14–17.
15.
Campen
,
C. H.
,
Caetano
,
E. F.
,
Capela Moraes
,
C. A.
,
and
da Fonseca
,
R.
, Jr.
,
2006
, “
Gas-Liquid Cylindrical Cyclones (GLCC©) Assuring Liquid Presence on a Subsea Multiphase Pumping System
,”
Fifth North American Conference on Multiphase Production
, Banff, AB, Canada, May 31–June 2.
16.
Torres
,
C.
,
Gomez
,
L.
, and
Mohan
,
R.
,
2005
, “
CFD Simulations and Mechanistic Modeling of Dual Inlet Gas-Liquid Cylindrical Cyclone (GLCC©) Compact Separator
,”
Fourth International Conference on CFD
, Trondheim, Norway, June 6–8.
17.
Wang
,
S.
,
Gomez
,
L. E.
,
Mohan
,
R. S.
,
Shoham
,
O.
,
Kouba
,
G. E.
, and
Marrelli
,
J. D.
,
2010
, “
The State-on-the-Art of Gas-Liquid Cylindrical Cyclone Control Technology: From Lab to Field
,”
ASME J. Energy Resour. Technol.
,
132
(
3
), p.
032701
.
18.
Ziliukas
,
A.
, and
Kukis
,
M.
,
2013
, “
Pressure Vessel With Corrugated Core Numerical Strength and Experimental Analysis
,”
Mechanika
,
19
(
4
), pp.
374
379
.
19.
Kozak
,
D.
,
Samardzic
,
I.
, and
Stoic
,
A.
,
2009
, “
Stress Analyses of Cylindrical Vessel With Changeable Head Geometry
,”
Sci. Bull., Ser. C
,
23
(
100
), pp.
93
104
.http://www.nordtech.ubm.ro/issues/2009/2009.01.14.pdf
20.
Kalaycioglu
,
B.
, and
Dirikolu
,
M. H.
,
2010
, “
Investigation of the Design of a Metal-Lined Fully Wrapped Composite Vessel Under High Internal Pressure
,”
High Pressure Res.
,
30
(
3
), pp.
428
437
.
21.
Shen
,
J.
,
Tang
,
Y. F.
, and
Liu
,
Y. H.
,
2015
, “
Buckling Analysis of Pressure Vessel Based on Finite Element Method
,”
Procedia Eng.
,
130
, pp.
355
363
.
22.
Nabhani
,
F.
,
Ladokun
,
T.
, and
Askari
,
V.
, 2012, “
Reduction of Stresses in Cylindrical Pressure Vessels Using Finite Element Analysis
,”
Finite Element Analysis—From Biomedical Applications to Industrial Developments
D.
Moratal
, ed., InTech, Rijeka, Croatia, pp. 379–390.
23.
Wu
,
Q. G.
,
Chen
,
X. D.
,
Fan
,
Z. C.
, and
Nie
,
D. F.
,
2015
, “
Stress and Damage Analyses of Composite Overwrapped Pressure Vessel
,”
Procedia Eng.
,
130
, pp.
32
40
.
24.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
3rd ed.
, DCW Industries, La Canada, CA.
25.
Malalasekera
,
W.
, and
Versteeg
,
H. K.
,
2007
,
An Introduction to Computational Fluid Dynamics
,
2nd ed.
, Pearson Education, Harlow, UK.
You do not currently have access to this content.