This paper presents experimental investigations conducted to understand the influence of water-soluble drag-reducing polymers (DRPs) in single- and two-phase (stratified wavy) flow on flow-field characteristics. These experiments have been presented for water and air–water flowing in a horizontal polyvinyl chloride 22.5-mm ID, 8.33-m long pipe. The effects of liquid flow rates and DRP concentrations on streamlines and the instantaneous velocity were investigated by using particle image velocimetry (PIV) technique. A comparison of the PIV results was performed by comparing them with the computational results obtained by fluent software. One of the comparisons has been done between the PIV results, where a turbulent flow with DRP was examined, and the laminar–computational fluid dynamic (CFD) prediction. An agreement was found in the region near the pipe wall in some cases. The results showed the powerfulness of using the PIV techniques in understanding the mechanism of DRP in single- and two-phase flow especially at the regions near the pipe wall and near the phases interface. The results of this study indicate that an increase in DRP concentrations results in an increase in drag reduction up to 45% in single-phase water flow and up to 42% in air–water stratified flow.

References

References
1.
Ahmed
,
W. H.
, and
Ismail
,
B. I.
,
2008
, “
Innovative Techniques for Two-Phase Flow Measurements
,”
Recent Pat. Electr. Electron. Eng.
,
1
(
1
), pp.
1
13
.https://pdfs.semanticscholar.org/62c4/5ad00ff34a0d345245a98b5060d3e380c2d4.pdf
2.
de Melo Vieira
,
R. A.
, and
Prado
,
M. G.
,
2014
, “
Modeling Oscillatory Behavior of Electrical Submersible Pump Wells Under Two-Phase Flow Conditions
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
041001
.
3.
Barrios
,
L.
, and
Prado
,
M. G.
,
2011
, “
Experimental Visualization of Two-Phase Flow Inside an Electrical Submersible Pump Stage
,”
ASME J. Energy Resour. Technol.
,
133
(
4
), p.
042901
.
4.
Kabiri-Samani
,
A. R.
,
Borghei
,
S. M.
, and
Saidi
,
M. H.
,
2007
, “
Fluctuation of Air-Water Two-Phase Flow in Horizontal and Inclined Water Pipelines
,”
ASME J. Fluids Eng.
,
129
(
1
), pp.
1
14
.
5.
Erickson
,
D.
, and
Twaite
,
D.
,
1996
, “
Pipeline Integrity Monitoring System for Leak Detection, Control, and Optimization of Wet Gas Pipelines
,” SPE Annual Technical Conference and Exhibition, Denver, CO, Oct. 6–9,
SPE
Paper No. SPE-36607-MS.
6.
Abubakar
,
A.
,
Al-Wahaibi
,
T.
,
Al-Wahaibi
,
Y.
,
Al-Hashmi
,
A. R.
, and
Al-Ajmi
,
A.
,
2014
, “
Roles of Drag Reducing Polymers in Single- and Multi-Phase Flows
,”
J. Chem. Eng. Res. Des.
,
92
, pp.
2153
2181
.
7.
Toms
,
B. A.
,
1948
, “
Some Observations on the Flow of Linear Polymer Solutions Through Straight Tubes at Large Reynolds Numbers
,”
First International Congress on Rheology
, Amsterdam, The Netherlands, Sept. 21–24, pp.
135
141
.
8.
Li
,
F. C.
, and
Hishida
,
K.
,
2009
, “
Particle Image Velocimetry Techniques and Its Applications in Multiphase Systems
,”
Adv. Chem. Eng.
,
37
, pp.
87
147
.
9.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S.
, and
Kompenhans
,
J.
,
2013
,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
New York
.
10.
Buchhave
,
P.
,
1992
, “
Particle Image Velocimetry—Status and Trends
,”
Exp. Therm. Fluid Sci.
,
5
(
5
), pp.
586
604
.
11.
Abdulmouti
,
H.
, and
Jassim
,
E.
,
2013
, “
Visualization and Measurements of Bubbly Two-Phase Flow Structure Using Particle Imaging Velocimetry (PIV)
,”
Eur. Sci. J.
,
9
(
21
), pp. 197–208.https://eujournal.org/index.php/esj/article/view/1451
12.
Saarenrinne
,
P.
,
Honkanen
,
M.
,
Parssinen
,
T.
, and
Eloranta
,
H.
,
2004
, “
Digital Imaging and PIV Methods in Multiphase Flows
,” Tampere University of Technology, Tampere, Finland, Report No. 175.
13.
Dudderar
,
T. D.
, and
Simpkins
,
P. G.
,
1977
, “
Laser Speckle Photography in a Fluid Medium
,”
Nature
,
270
(
5632
), pp.
45
47
.
14.
Tassin
,
A. L.
,
Li
,
C. Y.
,
Ceccio
,
S. L.
, and
Bernal
,
L. P.
,
1995
, “
Velocity Field Measurements of Cavitating Flows
,”
Exp. Fluids
,
20
(
2
), pp.
125
130
.
15.
Harpold
,
A. A.
,
Mostaghimi
,
S.
,
Vlachos
,
P. P.
,
Brannan
,
K.
, and
Dillaha
,
T.
,
2006
, “
Stream Discharge Measurement Using a Large-Scale Particle Image Velocimetry (LSPIV) Prototype
,”
Trans. ASABE
,
49
(
6
), pp.
1791
1805
.
16.
Novotný
,
J.
,
Nožička
,
J.
,
Adamec
,
J.
, and
Nováková
,
L.
,
2005
, “
Measurement of Two Phase Flow
,”
Acta Polytech.
,
45
(
3
), pp. 73–76.https://ojs.cvut.cz/ojs/index.php/ap/article/download/716/548
17.
Ning
,
T.
,
Guo
,
F.
,
Chen
,
B.
, and
Zhang
,
X.
,
2009
, “
PIV Measurement of Turbulent Bubbly Mixing Layer Flow With Polymer Additives
,”
J. Phys.: Conf. Ser.
,
147
(
1
), p.
012014
.
18.
Hassan
,
Y. A.
,
Blanchat
,
T. K.
,
Seeley
,
C. H.
, and
Canaan
,
R. E.
,
1992
, “
Simultaneous Velocity Measurements of Both Components of a Two-Phase Flow Using Particle Image Velocimetry
,”
Int. J. Multiphase Flow
,
18
(
3
), pp.
371
395
.
19.
Deen
,
N. G.
,
1999
,
Multiphase Particle Image Velocimetry Measurements in a Bubble Column
,
Aalborg University
,
Esbjerg, Denmark
.
20.
Lindken
,
R.
, and
Merzkirch
,
W.
,
2002
, “
A Novel PIV Technique for Measurements in Multiphase Flows and Its Application to Two-Phase Bubbly Flows
,”
Exp. Fluids
,
33
(
6
), pp.
814
825
.
21.
Aubin
,
J.
,
Le Sauze
,
N.
,
Bertrand
,
J.
,
Fletcher
,
D. F.
, and
Xuereb
,
C.
,
2004
, “
PIV Measurements of Flow in an Aerated Tank Stirred by a Down- and an Up-Pumping Axial Flow Impeller
,”
Exp. Therm. Fluid Sci.
,
28
(
5
), pp.
447
456
.
22.
Coupland
,
J. M.
,
Garner
,
C. P.
,
Alcock
,
R. D.
, and
Halliwell
,
N. A.
,
2006
, “
Holographic Particle Image Velocimetry and Its Application in Engine Development
,”
J. Phys.: Conf. Ser.
,
45
(
1
), p.
29
.
23.
Czapp
,
M.
,
Muller
,
C.
,
Fernández
,
P. A.
, and
Sattelmayer
,
T.
,
2012
, “
High-Speed Stereo and 2D PIV Measurements of Two-Phase Slug Flow in a Horizontal Pipe
,”
16th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July 9–12, pp. 1–11.http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2012/upload/271_paper_nlgqlh.pdf
24.
Choi
,
H. J.
, and
Jhon
,
M. S.
,
1996
, “
Polymer-Induced Turbulent Drag Reduction
,”
Ind. Eng. Chem. Res.
,
35
(9), pp.
2993
2998
.
25.
Gyr
,
A.
, and
Bewersdorff
,
H. W.
,
2013
,
Drag Reduction of Turbulent Flows by Additives
, Vol.
32
,
Springer Science & Business Media
,
New York
.
26.
Manfield
,
P. D.
,
Lawrence
,
C. J.
, and
Hewitt
,
G. F.
,
1999
, “
Drag Reduction With Additives in Multiphase Flow: A Literature Survey
,”
Multiphase Sci. Technol.
,
11
(
3
), pp. 197–221.
27.
Jubran
,
B. A.
,
Zurigat
,
Y. H.
, and
Goosen
,
M. F. A.
,
2005
, “
Drag Reducing Agents in Multiphase Flow Pipelines: Recent Trends and Future Needs
,”
Pet. Sci. Technol.
,
23
(
11–12
), pp.
1403
1424
.
28.
Al-Sarkhi
,
A.
,
2010
, “
Drag Reduction With Polymers in Gas-Liquid/Liquid-Liquid Flows in Pipes: A Literature Review
,”
J. Natural Gas Sci. Eng.
,
2
(
1
), pp.
41
48
.
29.
Escudier
,
M. P.
, and
Presti
,
F.
,
1996
, “
Pipe Flow of a Thixotropic Liquid
,”
J. Non-Newtonian Fluid Mech.
,
62
(
2–3
), pp.
291
306
.
30.
Gaard
,
S.
, and
Isaksen
,
O. T.
,
2003
, “
Experiments With Various Drag Reducing Additives in Turbulent Flow in Dense Phase Gas Pipelines
,” PSIG Annual Meeting, Bern, Switzerland, Oct. 15–17, Paper No.
PSIG-03B3
.https://www.onepetro.org/conference-paper/PSIG-03B3
31.
Escudier
,
M. P.
,
Poole
,
R. J.
,
Presti
,
F.
,
Dales
,
C.
,
Nouar
,
C.
,
Desaubry
,
C.
,
Graham
,
L.
, and
Pullum
,
L.
,
2005
, “
Observations of Asymmetrical Flow Behaviour in Transitional Pipe Flow of Yield-Stress and Other Shear-Thinning Liquids
,”
J. Non-Newtonian Fluid Mech.
,
127
(
2
), pp.
143
155
.
32.
Peixinho
,
J.
,
Nouar
,
C.
,
Desaubry
,
C.
, and
Théron
,
B.
,
2005
, “
Laminar Transitional and Turbulent Flow of Yield Stress Fluid in a Pipe
,”
J. Non-Newtonian Fluid Mech.
,
128
(
2
), pp.
172
184
.
33.
Mohsenipour
,
A. A.
, and
Pal
,
R.
,
2013
, “
Drag Reduction in Turbulent Pipeline Flow of Mixed Nonionic Polymer and Cationic Surfactant Systems
,”
Can. J. Chem. Eng.
,
91
(
1
), pp.
190
201
.
34.
Oliver
,
D. R.
, and
Hoon
,
A. Y.
,
1968
, “
Two Phase Non-Newtonian Flow: Part 1 Pressure Drop and Holdup
,”
Trans. Instn. Chem. Engrs.
,
46
(4), pp. 106–115.
35.
Sylvester
,
N. D.
, and
Brill
,
J. P.
,
1976
, “
Drag Reduction in Two‐Phase Annular‐Mist Flow of Air and Water
,”
AIChE J.
,
22
(
3
), pp.
615
617
.
36.
Sifferman
,
T. R.
, and
Greenkorn
,
R. A.
,
1981
, “
Drag Reduction in Three Distinctly Different Fluid Systems
,”
Soc. Pet. Eng. J.
,
21
(
6
), pp.
663
669
.
37.
Kang
,
C.
,
Vancko
,
R. M.
,
Green
,
A. S.
,
Kerr
,
H.
, and
Jepson
,
W. P.
,
1998
, “
Effect of Drag-Reducing Agents in Multiphase Flow Pipelines
,”
ASME J. Energy Resour. Technol.
,
120
(
1
), pp.
15
19
.
38.
Al-Sarkhi
,
A.
, and
Hanratty
,
T. J.
,
2001
, “
Effect of Drag-Reducing Polymers on Annular Gas–Liquid Flow in a Horizontal Pipe
,”
Int. J. Multiphase Flow
,
27
(
7
), pp.
1151
1162
.
39.
Soleimani
,
A.
,
Al-Sarkhi
,
A.
, and
Hanratty
,
T. J.
,
2002
, “
Effect of Drag-Reducing Polymers on Pseudo-Slugs––Interfacial Drag and Transition to Slug Flow
,”
Int. J. Multiphase Flow
,
28
(
12
), pp.
1911
1927
.
40.
Fernandes
,
R. L. J.
,
Jutte
,
B. M.
, and
Rodriguez
,
M. G.
,
2004
, “
Drag Reduction in Horizontal Annular Two-Phase Flow
,”
Int. J. Multiphase Flow
,
30
(
9
), pp.
1051
1069
.
41.
Daas
,
M.
, and
Bleyle
,
D.
,
2005
, “
Influence of Liquid Viscosity on the Pressure Loss and the Effectiveness of Drag-Reducing Agents in Horizontal Slug Flow
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
149
152
.
42.
Mowla
,
D.
, and
Naderi
,
A.
,
2006
, “
Experimental Study of Drag Reduction by a Polymeric Additive in Slug Two-Phase Flow of Crude Oil and Air in Horizontal Pipes
,”
Chem. Eng. Sci.
,
61
(
5
), pp.
1549
1554
.
43.
Spedding
,
P. L.
,
Benard
,
E.
, and
Donnelly
,
G. F.
,
2006
, “
Prediction of Pressure Drop in Multiphase Horizontal Pipe Flow
,”
Int. Commun. Heat Mass Transfer
,
33
(
9
), pp.
1053
1062
.
44.
Moré
,
P. P.
,
Kang
,
C.
, and
Magalhães
,
A. A. O.
,
2008
, “
The Performance of Drag Reducing Agents in Multiphase Flow Conditions at High Pressure; Positive and Negative Effects
,”
ASME
Paper No. IPC2008-64336.
45.
Fernandes
,
R. L. J.
,
Fleck
,
B. A.
,
Heidrick
,
T. R.
,
Torres
,
L.
, and
Rodriguez
,
M. G.
,
2009
, “
Experimental Study of DRA for Vertical Two-Phase Annular Flow
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
023002
.
46.
Felizola
,
H.
, and
Shoham
,
O.
,
1995
, “
A Unified Model for Slug Flow in Upward Inclined Pipes
,”
ASME J. Energy Resour. Technol.
,
117
(1), pp.
7
12
.
47.
Zhang
,
H. Q.
,
Wang
,
Q.
,
Sarica
,
C.
, and
Brill
,
J. P.
,
2003
, “
Unified Model for Gas-Liquid Pipe Flow Via Slug Dynamics—Part 1: Model Development
,”
ASME J. Energy Resour. Technol.
,
125
(
4
), pp.
266
273
.
48.
Karami
,
H. R.
, and
Mowla
,
D.
,
2013
, “
A General Model for Predicting Drag Reduction in Crude Oil Pipelines
,”
J. Pet. Sci. Eng.
,
111
, pp.
78
86
.
49.
Lumley
,
J. L.
,
1969
, “
Drag Reduction by Additives
,”
Annu. Rev. Fluid Mech.
,
1
(
1
), pp.
367
384
.
50.
Joseph
,
D. D.
,
2013
,
Fluid Dynamics of Viscoelastic Liquids
, Vol.
84
,
Springer Science & Business Media
,
New York
.
51.
De Gennes
,
P. G.
,
1990
,
Introduction to Polymer Dynamics
,
CUP Archive
,
Cambridge, UK
.
52.
Warholic
,
M. D.
,
Massah
,
H.
, and
Hanratty
,
T. J.
,
1999
, “
Influence of Drag-Reducing Polymers on Turbulence: Effects of Reynolds Number, Concentration and Mixing
,”
Exp. Fluids
,
27
(
5
), pp.
461
472
.
53.
Schlichting
,
H.
,
Gersten
,
K.
,
Krause
,
E.
, and
Oertel
,
H.
,
1955
,
Boundary-Layer Theory
, Vol.
7
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.