Chlorine plays an important role in the slagging and corrosion of boilers that burn high-chlorine content biomass. This research investigated the emissions of hydrogen chloride (HCl) gas from combustion of biomass in a fixed bed, as functions of the mass air flow rate through the bed and of the moisture content of the fuel. The biomass burned was corn straw, either raw or torrefied. Results showed that increasing the air flow rate through the bed increased the release of HCl gas, as a result of enhanced combustion intensity and associated enhanced heat release rates. When the airflow through the bed was increased by a factor of six, the amount of fuel-bound chlorine converted to HCl nearly tripled. Upon completion of combustion, most of the chlorine remained in the biomass ashes, with the exception of the highest air flow case where the fraction of chlorine released in HCl equaled that captured in the ashes. HCl emissions from torrefied biomass were found to be lower than those from raw biomass. Finally, drying the biomass proved to be beneficial in drastically curtailing the generation of HCl gas.

References

References
1.
Saidur
,
R.
,
Abdelaziz
,
E. A.
,
Demirbas
,
A.
,
Hossain
,
M. S.
, and
Mekhilef
,
S.
,
2011
, “
A Review on Biomass as a Fuel for Boilers
,”
Renewable Sustainable Energy Rev.
,
15
(
5
), pp.
2262
2289
.
2.
Baxter
,
L.
,
2005
, “
Biomass-Coal Co-Combustion: Opportunity for Affordable Renewable Energy
,”
Fuel
,
84
(
10
), pp.
1295
1302
.
3.
Tillman
,
D. A.
,
2000
, “
Biomass Cofiring: The Technology, the Experience, the Combustion Consequences
,”
Biomass Bioenergy
,
19
(
6
), pp.
365
384
.
4.
Demirbas
,
A.
,
2005
, “
Potential Applications of Renewable Energy Sources, Biomass Combustion Problems in Boiler Power Systems and Combustion Related Environmental Issues
,”
Prog. Energy Combust. Sci.
,
31
(
2
), pp.
171
192
.
5.
Nussbaumer
,
T.
,
2003
, “
Combustion and Co-Combustion of Biomass:  Fundamentals, Technologies, and Primary Measures for Emission Reduction
,”
Energy Fuels
,
17
(
6
), pp.
1510
1521
.
6.
Van den Broek
,
R.
,
Faaij
,
A.
, and
Van Wijk
,
A.
,
1996
, “
Biomass Combustion for Power Generation
,”
Biomass Bioenergy
,
11
(
4
), pp.
271
281
.
7.
Brennan
,
L.
, and
Owende
,
P.
,
2010
, “
Biofuels From Microalgae—A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
557
577
.
8.
Quesito
,
F.
,
Santarelli
,
M.
,
Leone
,
P.
, and
Aggarwal
,
S. K.
,
2013
, “
Biogas Combustion in Premixed Flames or Electrochemical Oxidation in SOFC: Exergy and Emission Comparison
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021201
.
9.
Demirbas
,
A.
,
2004
, “
Combustion Characteristics of Different Biomass Fuels
,”
Prog. Energy Combust. Sci.
,
30
(
2
), pp.
219
230
.
10.
Romeo
,
L. M.
, and
Gareta
,
R.
,
2009
, “
Fouling Control in Biomass Boilers
,”
Biomass Bioenergy
,
33
(
5
), pp.
854
861
.
11.
Kassman
,
H.
,
Broström
,
M.
,
Berg
,
M.
, and
Åmand
,
L. E.
,
2011
, “
Measures to Reduce Chlorine in Deposits: Application in a Large-Scale Circulating Fluidised Bed Boiler Firing Biomass
,”
Fuel
,
90
(
4
), pp.
1325
1334
.
12.
Baxter
,
L. L.
, and
Miles
,
T. R. M.
, Jr.
,
Jenkins
,
B. M.
,
Milne
,
T.
,
Dayton
,
D.
,
Bryerse
,
R. W.
, and
Oden
,
L. L.
,
1998
, “
The Behavior of Inorganic Material in Biomass-Fired Power Boilers: Field and Laboratory Experiences
,”
Fuel Process. Technol.
,
54
(
1–3
), pp.
47
78
.
13.
Nielsen
,
H. P.
,
Frandsen
,
F. J.
,
Dam-Johansen
,
K.
, and
Baxter
,
L. L.
,
2000
, “
The Implications of Chlorine-Associated Corrosion on the Operation of Biomass-Fired Boilers
,”
Prog. Energy Combust. Sci.
,
26
(
3
), pp.
283
298
.
14.
Hindiyarti
,
L.
,
Frandsen
,
F.
,
Livbjerg
,
H.
,
Glarborg
,
P.
, and
Marshall
,
P.
,
2008
, “
An Exploratory Study of Alkali Sulfate Aerosol Formation During Biomass Combustion
,”
Fuel
,
87
(
8
), pp.
1591
1600
.
15.
Reichel
,
H. H.
, and
Schirmer
,
U.
,
1989
, “
Waste Incineration Plants in the FRG: Construction, Materials, Investigation on Cases of Corrosion
,”
Mater. Corros.
,
40
(
3
), pp.
135
141
.
16.
Björkman
,
E.
, and
Strömberg
,
B.
,
1998
, “
Release of Chlorine From Biomass at Pyrolysis and Gasification Conditions 1
,”
Energy Fuels
,
11
(
5
), pp.
1026
1032
.
17.
Jensen
,
P. A.
,
Frandsen
,
F. J.
,
DamJohansen
,
K.
, and
Sander
,
B.
,
2000
, “
Experimental Investigation of the Transformation and Release to Gas Phase of Potassium and Chlorine During Straw Pyrolysis
,”
Energy Fuels
,
14
(
6
), pp.
1280
1285
.
18.
Knudsen
,
J. N.
,
Jensen
,
P. A.
, and
Damjohansen
,
K.
,
2004
, “
Transformation and Release to the Gas Phase of Cl, K, and S During Combustion of Annual Biomass
,”
Energy Fuels
,
18
(
5
), pp.
1385
1399
.
19.
Johansen
,
J. M.
,
Jakobsen
,
J. G.
,
Frandsen
,
F. J.
, and
Glarborg
,
P.
,
2011
, “
Release of K, Cl, and S During Pyrolysis and Combustion of High-Chlorine Biomass
,”
Energy Fuels
,
25
(
11
), pp.
4961
4971
.
20.
Van Lith
,
S. C.
,
Alonso-Ramírez
,
V.
,
Jensen
,
P. A.
,
Frandsen
,
F. J.
, and
Glarborg
,
P.
,
2006
, “
Release to the Gas Phase of Inorganic Elements During Wood Combustion—Part 1:  Development and Evaluation of Quantification Methods
,”
Energy Fuels
,
20
(
3
), pp.
964
978
.
21.
Van Lith
,
S. C.
,
Jensen
,
P. A.
,
Frandsen
,
F. J.
, and
Glarborg
,
P.
,
2008
, “
Release to the Gas Phase of Inorganic Elements During Wood Combustion—Part 2: Influence of Fuel Composition
,”
Energy Fuels
,
22
(
3
), pp.
1598
1609
.
22.
Pedersen
,
A. J.
,
Van Lith
,
S. C.
,
Frandsen
,
F. J.
,
Steinsen
,
S. D.
, and
Holgersen
,
L. B.
,
2010
, “
Release to the Gas Phase of Metals, S and Cl During Combustion of Dedicated Waste Fractions
,”
Fuel Process. Technol.
,
91
(
9
), pp.
1062
1072
.
23.
Michelsen
,
H. P.
,
Frandsen
,
F.
,
Dam-Johansen
,
K.
, and
Larsen
,
O. H.
,
1998
, “
Deposition and High Temperature Corrosion in a 10 MW Straw Fired Boiler
,”
Fuel Process. Technol.
,
54
(
1–3
), pp.
95
108
.
24.
Hansen
,
L. A.
,
Nielsen
,
H. P.
,
Frandsen
,
F. J.
,
Dam-Johansen
,
K.
,
Hørlyck
,
S.
, and
Karlsson
,
A.
,
2000
, “
Influence of Deposit Formation on Corrosion at a Straw-Fired Boiler
,”
Fuel Process. Technol.
,
64
(
1–3
), pp.
189
209
.
25.
Ryu
,
C.
,
Yang
,
Y. B.
,
Khor
,
A.
,
Yates
,
N. E.
,
Sharifi
,
V. N.
, and
Swithenbank
,
J.
,
2006
, “
Effect of Fuel Properties on Biomass Combustion: Part I—Experiments—Fuel Type, Equivalence Ratio and Particle Size
,”
Fuel
,
85
(
7–8
), pp.
1039
1046
.
26.
Lin
,
J. C. M.
,
2007
, “
Combination of a Biomass Fired Updraft Gasifier and a Stirling Engine for Power Production
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
66
70
.
27.
Shin
,
D.
, and
Choi
,
S.
,
2000
, “
The Combustion of Simulated Waste Particles in a Fixed Bed
,”
Combust. Flame
,
121
(
1–2
), pp.
167
180
.
28.
Kuo
,
J. T.
,
Hsu
,
W. S.
, and
Yo
,
T. C.
,
1996
, “
Effect of Air Distribution on Solid Fuel Bed Combustion
,”
ASME J. Energy Resour. Technol.
,
119
(
2
), pp.
120
128
.
29.
Bragato
,
M.
,
Joshi
,
K.
,
Carlson
,
J. B.
,
Tenório
,
J. A. S.
, and
Levendis
,
Y. A.
,
2012
, “
Combustion of Coal, Bagasse and Blends Thereof—Part I: Emissions From Batch Combustion of Fixed Beds of Fuels
,”
Fuel
,
96
(
7
), pp.
43
50
.
30.
Bragato
,
M.
,
Joshi
,
K.
,
Carlson
,
J. B.
,
Tenório
,
J. A. S.
, and
Levendis
,
Y. A.
,
2011
, “
Combustion of Coal, Bagasse and Blends Thereof—Part II: Speciation of PAH Emissions
,”
Fuel
,
90
(
7
), pp.
51
58
.
31.
Levendis
,
Y. A.
,
Atal
,
A.
, and
Carlson
,
J. B.
,
1998
, “
PAH and Soot Emissions From Combustion of Coal and Waste Tire-Derived-Fuel in Fixed Beds
,”
Combust. Sci. Technol.
,
134
(
1–6
), pp.
407
431
.
32.
Khor
,
A.
,
Ryu
,
C.
,
Yang
,
Y. B.
,
Sharifi
,
V. N.
, and
Swithenbank
,
J.
,
2007
, “
Straw Combustion in a Fixed Bed Combustor
,”
Fuel
,
86
(
1–2
), pp.
152
160
.
33.
Zhou
,
H.
,
Jensen
,
A. D.
,
Glarborg
,
P.
, and
Kavaliauskas
,
A.
,
2006
, “
Formation and Reduction of Nitric Oxide in Fixed-Bed Combustion of Straw
,”
Fuel
,
85
(
5
), pp.
705
716
.
34.
Saastamoinen
,
J. J.
, and
Taipale
,
R.
,
2000
, “
Propagation of the Ignition Front in Beds of Wood Particles
,”
Combust. Flame
,
123
(
1
), pp.
214
226
.
35.
Liang
,
L.
,
Sun
,
R.
,
Fei
,
J.
,
Wu
,
S.
,
Liu
,
X.
,
Dai
,
K.
, and
Yao
,
N.
,
2008
, “
Experimental Study on Effects of Moisture Content on Combustion Characteristics of Simulated Municipal Solid Wastes in a Fixed Bed
,”
Bioresour. Technol.
,
99
(
15
), pp.
7238
7246
.
36.
Yang
,
Y. B.
,
Sharifi
,
V. N.
, and
Swithenbank
,
J.
,
2004
, “
Effect of Air Flow Rate and Fuel Moisture on the Burning Behaviours of Biomass and Simulated Municipal Solid Wastes in Packed Beds
,”
Fuel
,
83
(
11–12
), pp.
1553
1562
.
37.
Zhou
,
H.
,
Jensen
,
A. D.
,
Glarborg
,
P.
,
Jensen
,
P. A.
, and
Kavaliauskas
,
A.
,
2005
, “
Numerical Modeling of Straw Combustion in a Fixed Bed
,”
Fuel
,
84
(
4
), pp.
389
403
.
38.
Van Der Lans
,
R. P.
,
Pedersen
,
L. T.
,
Jensen
,
A.
,
Glarborg
,
P.
, and
Dam-Johansen
,
K.
,
2000
, “
Modelling and Experiments of Straw Combustion in a Grate Furnace
,”
Biomass Bioenergy
,
19
(
3
), pp.
199
208
.
39.
Shanmukharadhya
,
K. S.
, and
Sudhakar
,
K. G.
,
2007
, “
Effect of Fuel Moisture on Combustion in a Bagasse Fired Furnace
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
248
253
.
40.
Ren
,
X.
,
Sun
,
R.
,
Chi
,
H. H.
,
Meng
,
X.
,
Li
,
Y.
, and
Levendis
,
Y. A.
,
2017
, “
Hydrogen Chloride Emissions From Combustion of Raw and Torrefied Biomass
,”
Fuel
,
200
, pp.
37
46
.
41.
Zhao
,
W.
,
Li
,
Z. Q.
,
Wang
,
D. W.
,
Zhu
,
Q. Y.
,
Sun
,
R.
,
Meng
,
B. H.
, and
Zhao
,
G.
,
2008
, “
Combustion Characteristics of Different Parts of Corn Straw and NO Formation in a Fixed Bed
,”
Bioresour. Technol.
,
99
(
8
), pp.
2956
2963
.
42.
Palmer
,
T. Y.
,
1976
, “
Combustion Sources of Atmospheric Chlorine
,”
Nature
,
263
(
5572
), pp.
44
46
.
43.
Eklund
,
G.
,
Pedersen
,
J. R.
, and
Strömberg
,
B.
,
1988
, “
Methane, Hydrogen Chloride and Oxygen Form a Wide Range of Chlorinated Organic Species in the Temperature Range 400 °C–950 °C
,”
Chemosphere
,
17
(
3
), pp.
575
586
.
44.
Reinhardt
,
T. E.
, and
Ward
,
D. E.
,
1995
, “
Factors Affecting Methyl Chloride Emissions From Forest Biomass Combustion
,”
Environ. Sci. Technol.
,
29
(
3
), pp. 825–832.
45.
Mcroberts
,
W. C.
,
Keppler
,
F.
,
Kalin
,
R. M.
, and
Harper
,
D. B.
,
2003
, “
Chloride Methylation by Plant Pectin: An Efficient Environmentally Significant Process
,”
Science
,
301
(
5630
), pp.
206
209
.
46.
Andreae
,
M. O.
,
Atlas
,
E.
,
Harris
,
G. W.
,
Kock
,
A. D.
,
Koppmann
,
R.
,
Maenhaut
,
W.
,
Manø
,
S.
,
Pollock
,
W. H.
,
Rudolph
,
J.
,
Scharffe
,
D.
,
Schebeske
,
G.
, and
Welling
,
M.
,
1996
, “
Methyl Halide Emissions From Savanna Fires in Southern Africa
,”
J. Geophys. Res.: Atmos.
,
101
(
D19
), pp.
23603
23613
.
47.
Lobert
,
J. M.
,
Keene
,
W. C.
,
Logan
,
J. A.
, and
Yevich
,
R.
,
1999
, “
Global Chlorine Emissions From Biomass Burning: Reactive Chlorine Emissions Inventory
,”
J. Geophys. Res. Atmos.
,
104
(
D7
), pp.
8373
8389
.
48.
Köser
,
J.
,
Becker
,
L. G.
,
Vorobiev
,
N.
,
Schiemann
,
M.
,
Scherer
,
V.
,
Böhm
,
B.
, and
Dreizler
,
A.
,
2015
, “
Characterization of Single Coal Particle Combustion Within Oxygen-Enriched Environments Using High-Speed OH-PLIF
,”
Appl. Phys. B
,
121
(
4
), pp.
459
464
.
You do not currently have access to this content.