This comprehensive investigation has been executed to compare the thermodynamic performance and optimization of LiCl–H2O and LiBr–H2O type absorption system integrated with flat-plate collectors (FPC), parabolic-trough collectors (PTC), evacuated-tube collectors (ETC), and compound parabolic collectors (CPC). A model of 10 kW is analyzed in engineering equation solver (ees) from thermodynamic perspectives. Solar collectors are integrated with a storage tank which fueled the LiCl–H2O and LiBr–H2O vapor absorption system to produce refrigeration at 7 °C in evaporator for Gujarat Region of India. The main objective includes the evaluation and optimization of critical performance and design parameters to exhibit the best working fluid pair and collector type. Optimum heat source temperature corresponding to energetic and exergetic aspects for LiCl–H2O pair is lower than that of LiBr–H2O pair for all collectors. Simulation shows that FPC has lowest capital cost, exergetic performance wise PTC is optimum, and ETC requires lowest collector area. On the basis of overall evaluation, solar absorption cooling systems are better to be powered by ETC with LiCl–H2O working fluid pair.

References

1.
Wu
,
S.
, and
Eames
,
I. W.
,
2000
, “
Innovations in Vapour-Absorption Cycles
,”
Appl. Energy
,
66
(
3
), pp.
251
266
.
2.
Harinarayana
,
T.
, and
Kashyap
,
K. J.
,
2014
, “
Solar Energy Generation Potential Estimation in India and Gujarat, Andhra, Telangana States
,”
Smart Grid Renewable Energy
,
5
(
11
), pp.
275
280
.
3.
Srikhirin
,
P.
,
Aphornratana
,
S.
, and
Chungpaibulpatana
,
S.
,
2001
, “
A Review of Absorption Refrigeration Technologies
,”
Renewable Sustainable Energy Rev.
,
5
(
4
), pp.
343
372
.
4.
Gommed
,
K.
,
Grossman
,
G.
, and
Ziegler
,
F.
,
2004
, “
Experimental Investigation of a LiCl-Water Open Absorption System for Cooling and Dehumidification
,”
ASME J. Sol. Energy Eng.
,
126
(
2
), pp.
710
715
.
5.
Won
,
S. H.
, and
Lee
,
W. Y.
,
1991
, “
Thermodynamic Design Data for Double Effect Absorption Heat Pump Systems Using Water-Lithium Chloride Cooling
,”
Heat Recovery Syst. CHP
,
11
(
1
), pp.
41
48
.
6.
Saravanan
,
R.
, and
Maiya
,
M. P.
,
1998
, “
Thermodynamic Comparison of Water-Based Working Fluid Combinations for a Vapour Absorption Refrigeration System
,”
Appl. Therm. Eng.
,
18
(
7
), pp.
553
568
.
7.
El-Ghalban
,
A. R.
,
2002
, “
Operational Results of an Intermittent Absorption Cooling Unit
,”
Int. J. Energy Res.
,
26
(
9
), pp.
825
835
.
8.
Gunhan
,
T.
,
Ekren
,
O.
,
Demir
,
V.
,
Hepbasli
,
A.
,
Erek
,
A.
, and
Sahin
,
A. S.
,
2014
, “
Experimental Exergetic Performance Evaluation of a Novel Solar Assisted LiCl–H2O Absorption Cooling System
,”
Energy Build.
,
68
(Pt. A), pp.
138
146
.
9.
Gogoi
,
T. K.
, and
Konwar
,
D.
,
2016
, “
Exergy Analysis of a H2O–LiCl Absorption Refrigeration System With Operating Temperatures Estimated Through Inverse Analysis
,”
Energy Convers. Manage.
,
110
, pp.
436
447
.
10.
Gogoi
,
T. K.
,
2016
, “
Estimation of Operating Parameters of a Water–LiBr Vapor Absorption Refrigeration System Through Inverse Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022002
.
11.
Kerme
,
E. D.
,
Chafidz
,
A.
,
Agboola
,
O. P.
,
Orfi
,
J.
,
Fakeeha
,
A. H.
, and
Al-Fatesh
,
A. S.
,
2017
, “
Energetic and Exergetic Analysis of Solar-Powered Lithium Bromide-Water Absorption Cooling System
,”
J. Clean. Prod.
,
151
, pp.
60
73
.
12.
Li
,
Z. F.
, and
Sumathy
,
K.
,
2001
, “
Experimental Studies on a Solar Powered Air Conditioning System With Partitioned Hot Water Storage Tank
,”
Sol. Energy
,
71
(
5
), pp.
285
297
.
13.
Ortiz
,
M.
,
Barsun
,
H.
,
He
,
H.
,
Vorobieff
,
P.
, and
Mammoli
,
A.
,
2010
, “
Modeling of a Solar-Assisted HVAC System With Thermal Storage
,”
Energy Build.
,
42
(
4
), pp.
500
509
.
14.
Ghaddar
,
N. K.
,
Shihab
,
M.
, and
Bdeir
,
F.
,
1997
, “
Modeling and Simulation of Solar Absorption System Performance in Beirut
,”
Renewable Energy
,
10
(
4
), pp.
539
558
.
15.
Onan
,
C.
,
Ozkan
,
D. B.
, and
Erdem
,
S.
,
2010
, “
Exergy Analysis of a Solar Assisted Absorption Cooling System on an Hourly Basis in Villa Applications
,”
Energy
,
35
(
12
), pp.
5277
5285
.
16.
Parham
,
K.
,
Atikol
,
U.
,
Yari
,
M.
, and
Agboola
,
O. P.
,
2013
, “
Evaluation and Optimization of Single Stage Absorption Chiller Using (LiCl–H2O) as the Working Pair
,”
Adv. Mech. Eng.
,
5
, p. 683157.
17.
She
,
X.
,
Yin
,
Y.
,
Xu
,
M.
, and
Zhang
,
X.
,
2015
, “
A Novel Low-Grade Heat-Driven Absorption Refrigeration System With LiCl–H2O and LiBr–H2O Working Pairs
,”
Int. J. Refrig.
,
58
, pp.
219
234
.
18.
Mazloumi
,
M.
,
Naghashzadegan
,
M.
, and
Javaherdeh
,
K.
,
2008
, “
Simulation of Solar Lithium Bromide–Water Absorption Cooling System With Parabolic Trough Collector
,”
Energy Convers. Manage
,
49
(
10
), pp.
2820
2832
.
19.
Chen
,
J. F.
,
Dai
,
Y. J.
, and
Wang
,
R. Z.
,
2017
, “
Experimental and Analytical Study on an Air-Cooled Single Effect LiBr–H2O Absorption Chiller Driven by Evacuated Glass Tube Solar Collector for Cooling Application in Residential Buildings
,”
Sol. Energy
,
151
, pp.
110
118
.
20.
Assilzadeh
,
F.
,
Kalogirou
,
S. A.
,
Ali
,
Y.
, and
Sopian
,
K.
,
2005
, “
Simulation and Optimization of a LiBr Solar Absorption Cooling System With Evacuated Tube Collectors
,”
Renew. Energy
,
30
(
8
), pp.
1143
1159
.
21.
Rubio-Maya
,
C.
,
Pacheco-Ibarra
,
J. J.
,
Belman-Flores
,
J. M.
,
Galván-González
,
S. R.
, and
Mendoza-Covarrubias
,
C.
,
2012
, “
NLP Model of a LiBr–H2O Absorption Refrigeration System for the Minimization of the Annual Operating Cost
,”
Appl. Therm. Eng.
,
37
, pp.
10
18
.
22.
Arora
,
A.
, and
Kaushik
,
S. C.
,
2009
, “
Theoretical Analysis of LiBr/H2O Absorption Refrigeration Systems
,”
Int. J. Energy Res.
,
33
(
15
), pp.
1321
1340
.
23.
Samanta
,
S.
, and
Basu
,
D. N.
,
2016
, “
Energy and Entropy-Based Optimization of a Single-Stage Water–Lithium Bromide Absorption Refrigeration System
,”
Heat Transfer Eng.
,
37
(
2
), pp.
232
241
.
24.
Saleh
,
A.
, and
Mosa
,
M.
,
2014
, “
Optimization Study of a Single-Effect Water–Lithium Bromide Absorption Refrigeration System Powered by Flat-Plate Collector in Hot Regions
,”
Energy Convers. Manage
,
87
, pp.
29
36
.
25.
Pandya
,
B.
,
Patel
,
J.
, and
Mudgal
,
A.
,
2017
, “
Thermodynamic Evaluation of Generator Temperature in LiBr-Water Absorption System for Optimal Performance
,”
Energy Proc.
,
109
, pp.
270
278
.
26.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
,
Wiley
,
Hoboken, NJ
.
27.
Mani
,
A.
,
1980
,
Handbook of Solar Radiation Data for India
,
Allied Publishers
,
New Delhi, India
.
28.
Kalogirou
,
S. A.
,
2013
,
Solar Energy Engineering: Processes and Systems
,
Academic Press
,
Cambridge, MA
.
29.
Kreith
,
F.
,
1982
,
Solar Heating and Cooling: Active and Passive Design
,
CRC Press
,
Boca Raton, FL
.
30.
Tsalikis
,
G.
, and
Martinopoulos
,
G.
,
2015
, “
Solar Energy Systems Potential for Nearly Net Zero Energy Residential Buildings
,”
Sol. Energy
,
115
, pp.
743
756
.
31.
Jafarkazemi
,
F.
, and
Ahmadifard
,
E.
,
2013
, “
Energetic and Exergetic Evaluation of Flat Plate Solar Collectors
,”
Renewable Energy
,
56
, pp.
55
63
.
32.
Patel
,
J.
,
Pandya
,
B.
, and
Mudgal
,
A.
,
2017
, “
Exergy Based Analysis of LiCl-H2O Absorption Cooling System
,”
Energy Proc.
,
109
, pp.
261
269
.
33.
Laidi
,
M.
, and
Hanini
,
S.
,
2013
, “
Optimal Solar COP Prediction of a Solar-Assisted Adsorption Refrigeration System Working With Activated Carbon/Methanol as Working Pairs Using Direct and Inverse Artificial Neural Network
,”
Int. J. Refrig.
,
36
(
1
), pp.
247
257
.
34.
Kalogirou
,
S.
,
2003
, “
The Potential of Solar Industrial Process Heat Applications
,”
Appl. Energy
,
76
(
4
), pp.
337
361
.
You do not currently have access to this content.