This paper aims to increase the efficiency of the maximum power point tracking (MPPT) methods by using an integral sliding mode voltage regulator (ISMVR). The ISMVR is applied to one of the frequently used MPPT methods called as tip speed ratio (TSR). The proposed method presents a fast and robust tracking capability. Also, there is no need to know about the parameters of the generator in order to generate the control signal. The ISMVR presents considerably simple control structure due to the fact that the authors used only the boost converter (BC) and controller parameters for the control signal. Additionally, the performances of the proposed improved TSR-MPPT method based on ISMVR are compared to the TSR-MPPT method based on conventional sliding mode voltage regulator (CSMVR) under the same conditions. The dynamic performance, robustness, and fast approximation of the offered method are proved with the simulations.

References

References
1.
Mancilla-David
,
F.
, and
Ortega
,
R.
,
2012
, “
Adaptive Passivity-Based Control for Maximum Power Extraction of Stand-Alone Windmill Systems
,”
Control Eng. Pract.
,
20
(
2
), pp.
173
181
.
2.
Eltamaly
,
A. M.
, and
Farh
,
H. M.
,
2013
, “
Maximum Power Extraction From Wind Energy System Based on Fuzzy Logic Control
,”
Electr. Power Syst. Res.
,
97
, pp.
144
150
.
3.
Song
,
S.-H.
,
Kang
,
S.
, and
Hahm
,
N.-K.
,
2003
, “
Implementation and Control of Grid Connected AC-DC-AC Power Converter for Variable Speed Wind Energy Conversion System
,”
IEEE Applied Power Electronics Conference and Exposition
(
APEC
), Miami Beach, FL, Feb. 9–13, pp.
154
158
.
4.
Yang
,
H.
,
Wei
,
Z.
, and
Chengzhi
,
L.
,
2009
, “
Optimal Design and Techno-Economic Analysis of a Hybrid Solar–Wind Power Generation System
,”
Appl. Energy
,
86
(
2
), pp.
163
169
.
5.
Masoud Barakati
,
S.
,
2008
, “
Modeling and Controller Design of a Wind Energy Conversion System Including a Matrix Converter
,”
Ph.D. thesis
, University of Waterloo, Waterloo, ON, Canada.https://uwspace.uwaterloo.ca/bitstream/handle/10012/3786/Final_ver_correction8.pdf;jsessionid=42AF603506F3009D32DF651287EFA65D?sequence=1
6.
Zinger
,
D. S.
, and
Muljadi
,
E.
,
1997
, “
Annualized Wind Energy Improvement Using Variable Speeds
,”
IEEE Trans. Ind. Appl.
,
33
(
6
), pp.
1444
1447
.
7.
Belhadj
,
J.
, and
Roboam
,
X.
,
2007
, “
Investigation of Different Methods to Control a Small Variable-Speed Wind Turbine With PMSM Drives
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
200
213
.
8.
Elia
,
S.
,
Gasulla
,
M.
, and
De Francesco
,
A.
,
2012
, “
Optimization in Distributing Wind Generators on Different Places for Energy Demand Tracking
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041202
.
9.
Abdullah
,
M. A.
,
Yatim
,
A. H. M.
,
Tan
,
C. W.
, and
Saidur
,
R.
,
2012
, “
A Review of Maximum Power Point Tracking Algorithms for Wind Energy Systems
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3220
3227
.
10.
Kazmi
,
S. M. R.
,
Goto
,
H.
,
Guo
,
H.-J.
, and
Ichinokura
,
O.
,
2011
, “
A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion Systems
,”
IEEE Trans. Ind. Electron.
,
58
(
1
), pp.
29
36
.
11.
Pan
,
C.-T.
, and
Juan
,
Y.-L.
,
2010
, “
A Novel Sensorless MPPT Controller for a High-Efficiency Microscale Wind Power Generation System
,”
IEEE Trans. Energy Convers.
,
25
(
1
), pp.
207
216
.
12.
Tan
,
K.
, and
Islam
,
S.
,
2004
, “
Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine System Without Mechanical Sensors
,”
IEEE Trans. Energy Convers.
,
19
(
2
), pp.
392
399
.
13.
Barakati
,
M.
,
Kazerani
,
M.
, and
Aplevich
,
D.
,
2009
, “
Maximum Power Tracking Control for a Wind Turbine System Including a Matrix Converter
,”
IEEE Trans. Energy Convers.
,
24
(
3
), pp.
705
713
.
14.
Kazmi
,
S. M. R.
,
Guo
,
H.-J.
,
Goto
,
H.
, and
Ichinokura
,
O.
,
2010
, “
Review and Critical Analysis of the Research Papers Published Till Date on Maximum Power Point Tracking in Wind Energy Conversion System
,”
IEEE Energy Conversion Congress and Exposition
(
ECCE
), Atlanta, GA, Sept. 12–16, pp.
4075
4082
.
15.
Iyasere
,
E.
,
Salah
,
M. H.
,
Dawson
,
D. M.
,
Wagner
,
J. R.
, and
Tatlicioglu
,
E.
,
2012
, “
Robust Nonlinear Control Strategy to Maximize Energy Capture in a Variable Speed Wind Turbine With an Internal Induction Generator
,”
J. Control Theory Appl.
,
10
(
2
), pp.
184
194
.
16.
Abo-Khalil
,
A. G.
, and
Lee
,
D.-C.
,
2008
, “
MPPT Control of Wind Generation Systems Based on Estimated Wind Speed Using SVR
,”
IEEE Trans. Ind. Electron.
,
55
(
3
), pp.
1489
1490
.
17.
Song
,
D.
,
Yang
,
J.
,
Cai
,
Z.
,
Dong
,
M.
,
Su
,
M.
, and
Wang
,
Y.
,
2017
, “
Wind Estimation With a Non-Standard Extended Kalman Filter and Its Application on Maximum Power Extraction for Variable Speed Wind Turbines
,”
Appl. Energy
,
190
, pp.
670
685
.
18.
Ganjefar
,
S.
,
Ghassemi
,
A. A.
, and
Ahmadi
,
M. M.
,
2014
, “
Improving Efficiency of Two-Type Maximum Power Point Tracking Methods of Tip-Speed Ratio and Optimum Torque in Wind Turbine System Using a Quantum Neural Network
,”
Energy
,
67
, pp.
444
453
.
19.
Aissaoui
,
A. G.
,
Tahour
,
A.
,
Essounbouli
,
N.
,
Nollet
,
F.
,
Abid
,
M.
, and
Chergui
,
M. I.
,
2013
, “
A Fuzzy-PI Control to Extract an Optimal Power From Wind Turbine
,”
Energy Convers. Manag.
,
65
, pp.
688
696
.
20.
Sheikhan
,
M.
,
Shahnazi
,
R.
, and
Nooshad Yousefi
,
A.
,
2013
, “
An Optimal Fuzzy PI Controller to Capture the Maximum Power for Variable-Speed Wind Turbines
,”
Neural Comput. Appl.
,
23
(
5
), pp.
1359
1368
.
21.
Wang
,
Y.
,
Chen
,
R.
,
Tan
,
J.
, and
Su
,
M.
,
2009
, “
An Optimal PID Control of Wind Generation Based on Matrix Converter
,”
IEEE International Power Electronics and Motion Control Conference
(
IPEMC
), Wuhan, China, May 17–20, pp.
1104
1109
.
22.
Trilla
,
L.
,
Bianchi
,
F. D.
, and
Gomis-Bellmunt
,
O.
,
2014
, “
Linear Parameter-Varying Control of Permanent Magnet Synchronous Generators for Wind Power Systems
,”
IET Power Electron.
,
7
(
3
), pp.
692
704
.
23.
Mohamed
,
A. Z.
,
Eskander
,
M. N.
, and
Ghali
,
F. A.
,
2001
, “
Fuzzy Logic Control Based Maximum Power Tracking of a Wind Energy System
,”
Renewable Energy
,
23
(
2
), pp.
235
245
.
24.
Lin
,
W.-M.
, and
Hong
,
C.-M.
,
2010
, “
Intelligent Approach to Maximum Power Point Tracking Control Strategy for Variable-Speed Wind Turbine Generation System
,”
Energy
,
35
(
6
), pp.
2440
2447
.
25.
Hong
,
C.-M.
,
Ou
,
T.-C.
, and
Lu
,
K.-H.
,
2013
, “
Development of Intelligent MPPT (Maximum Power Point Tracking) Control for a Grid-Connected Hybrid Power Generation System
,”
Energy
,
50
, pp.
270
279
.
26.
Jaramillo-Lopez
,
F.
,
Kenne
,
G.
, and
Lamnabhi-Lagarrigue
,
F.
,
2016
, “
A Novel Online Training Neural Network-Based Algorithm for Wind Speed Estimation and Adaptive Control of PMSG Wind Turbine System for Maximum Power Extraction
,”
Renewable Energy
,
86
, pp.
38
48
.
27.
Chen
,
J.-H.
,
Yau
,
H.-T.
, and
Hung
,
W.
,
2014
, “
Design and Study on Sliding Mode Extremum Seeking Control of the Chaos Embedded Particle Swarm Optimization for Maximum Power Point Tracking in Wind Power Systems
,”
Energies
,
7
(
3
), pp.
1706
1720
.
28.
Merida
,
J.
,
Aguilar
,
L. T.
, and
Jorge
,
D.
,
2014
, “
Analysis and Synthesis of Sliding Mode Control for Large Scale Variable Speed Wind Turbine for Power Optimization
,”
Renewable Energy
,
71
, pp.
715
728
.
29.
Yin
,
X.
,
Lin
,
Y.
,
Li
,
W.
,
Gu
,
Y.
,
Lei
,
P.
, and
Liu
,
H.
,
2015
, “
Sliding Mode Voltage Control Strategy for Capturing Maximum Wind Energy Based on Fuzzy Logic Control
,”
Electr. Power Energy Syst.
,
70
, pp.
45
51
.
30.
Weng
,
Y.-T.
, and
Hsu
,
Y.-Y.
,
2015
, “
Sliding Mode Regulator for Maximum Power Tracking and Copper Loss Minimisation of a Doubly Fed Induction Generator
,”
IET Renewable Power Gener.
,
9
(
4
), pp.
297
305
.
31.
Beltran
,
B.
,
Ahmed-Ali
,
T.
, and
Benbouzid
,
M. E. H.
,
2009
, “
High-Order Sliding-Mode Control of Variable-Speed Wind Turbines
,”
IEEE Trans. Ind. Electron.
,
56
(
9
), pp.
3314
3321
.
32.
Aihua
,
W.
,
Buhui
,
Z.
,
Jingfeng
,
M.
,
Guoqing
,
W.
, and
Xudong
,
Z.
,
2015
, “
Extended State Observer Based Integral Sliding Model Control for PMSG Variable Speed Wind Energy Conversion System
,”
34th Chinese Control Conference
(
ChiCC
), Hangzhou, China, July 28–30, pp.
3387
3391
.
33.
Tria
,
F. Z.
,
Srairi
,
K.
,
Benchouia
,
M. T.
, and
Benbouzid
,
M. E. H.
,
2017
, “
An Integral Sliding Mode Controller With Super-Twisting Algorithm for Direct Power Control of Wind Generator Based on a Doubly Fed Induction Generator
,”
Int. J. Syst. Assur. Eng. Manage
,
8
(4), pp. 762–769.
34.
Slotine
,
H.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
35.
Utkin
,
V. I.
,
1993
, “
Sliding Mode Control Design Principles and Applications to Electric Drives
,”
IEEE Trans. Ind. Electron.
,
40
(
1
), pp.
23
36
.
36.
Utkin
,
V.
, and
Shi
,
J. S. J.
,
1996
, “
Integral Sliding Mode in Systems Operating Under Uncertainty Conditions
,”
35th IEEE Conference on Decision and Control
(
CDC
), Kobe, Japan, Dec. 11–13, pp.
4591
4596
.
37.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(5), p.
051201
.
38.
Anderson
,
M.
, and
Beyene
,
A.
,
2015
, “
Integrated Resource Mapping of Wave and Wind Energy
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p. 0
11203
.
39.
Ibrahim
,
M.
,
Alsultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p. 0
51205
.
40.
Franco
,
J. A.
,
Jauregui
,
J. C.
, and
Toledano-Ayala
,
M.
,
2015
, “
Optimizing Wind Turbine Efficiency by Deformable Structures in Smart Blades
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051206
.
41.
Heier
,
S.
,
1998
,
Grid Integration of Wind Energy Conversion Systems
,
Wiley
, New York.
42.
Gitano-Briggs
,
H.
,
2010
, “
Small Wind Turbine Power Controllers
,”
Wind Power
,
S. M.
Muyeen
, ed., InTech, Rijeka, Croatia, pp.
165
188
.
43.
Molina
,
M. G.
,
dos Santos
,
E. C.
, and
Pacas
,
M.
,
2010
, “
Advanced Power Conditioning System for Grid Integration of Direct-Driven PMSG Wind Turbines
,”
IEEE Energy Conversion Congress and Exposition
(
ECCE
), Atlanta, GA, Sept. 12–16, pp.
3366
3373
.
44.
Esmaili
,
R.
,
Xu
,
L.
, and
Nichols
,
D. K.
, 2005, “
A New Control Method of Permanent Magnet Generator for Maximum Power Tracking in Wind Turbine Application
,”
IEEE
Power Engineering Society General Meeting, San Francisco, CA, June 12–16, pp.
1
6
.
45.
Qiu
,
Z.
,
Zhou
,
K.
, and
Li
,
Y.
,
2011
, “
Modeling and Control of Diode Rectifier Fed PMSG Based Wind Turbine
,”
Fourth IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies
(
DRPT
), Weihai, Shandong, July 6–9, pp.
1384
1388
.
46.
Yazıcı
,
İ.
, and
Yaylacı
,
E. K.
,
2016
, “
Fast and Robust Voltage Control of DC – DC Boost Converter by Using Fast Terminal Sliding Mode Controller
,”
IET Power Electron.
,
9
(
1
), pp.
120
125
.
47.
Yang
,
L.
, and
Yang
,
J.
,
2011
, “
Nonsingular Fast Terminal Sliding-Mode Control for Nonlinear Dynamical Systems
,”
Int. J. Robust Nonlinear Control
,
21
(16), pp.
1865
1879
.
You do not currently have access to this content.